		1MA1 Prac	tice papers Set 3: Paj	per 1H (R	egular) mark scheme – Version 1.0
Que	stion	Working	Answer	Mark	Notes
1.	<i>(a)</i>		4	1	B1 cao
	<i>(b)</i>		7 or (0,7)	1	B1 cao
2.		$\frac{25}{8} - \frac{5}{3} = \frac{75 - 40}{24} = \frac{35}{24}$ OR $2\frac{1}{8} - \frac{2}{3} = 2\frac{3 - 16}{24}$ $= 1\frac{27 - 1}{24}$ OR $2\frac{1}{8} - \frac{2}{3} = 2\frac{3 - 16}{24}$ $= 1\frac{27 - 1}{24}$	1 <u>11</u> 24	3	M1 for converting to improper fractions, at least one correct or $3 - 1 = 2$ and 'borrowing' or negative fraction answer M1 for putting fractions over a common denominator, at least one correct A1 for $\frac{35}{24}$ or $1\frac{11}{24}$
		$8 \ 3 \ 24 = 2\frac{-13}{24}$			

		1MA1 Prac	tice papers Set 3: Pap	oer 1H (R	egular) mark scheme – Version 1.0
Que	stion	Working	Answer	Mark	Notes
3.			20	3	M1 for $330 \div 120 (= 2.75)$ or $200 \div 60 (= 3^{1/3})$ or $450 \div 180 (= 2.5)$
					M1 for 450 ÷ 180 (= 2.5) AND 8 ד2.5"(= 20)
					A1 cao
					OR
					M1 for $120 \div 8 (= 15)$ or $60 \div 8 (= 7.5)$ or $180 \div 8 (= 22.5)$
					M1 for $330 \div (120 \div 8) (= 22)$ or $200 \div (60 \div 8) (= 26.6)$ or $450 \div (180 \div 8) (= 20)$
					A1 cao
					OR
					M1 for multiples of 120:60:180, e.g. 240:120:360
					M1 for multiples linked to 450 and 8+8+4 or scaling 2.5 oe
					A1 cao
4.	2	$2.25 \times 60 \div 100 = 1.35$	Railtickets with	4	NB. All work may be done in pence throughout
	1	1.35 + 0.80 = 2.15	correct calculations		
		$1.5 \times 60 \div 100 = 0.90$ 0.90 + 1.90 = 2.80			M1 for correct method to find credit card charge for one company e.g. $0.0225 \times 60 (= 1.35)$ oe or $0.015 \times 60 (= 0.9)$ oe
					M1 (dep) for correct method to find total additional charge or total price for one company e.g. $0.0225 \times 60 + 0.80$ or $0.015 \times 60 + 1.90$ or 2.15 or $2.8(0)$ or 62.15 or $62.8(0)$
					A1 for 2.15 and 2.8(0) or 62.15 and 62.8(0)
					C1 (dep on M1) for a statement deducing the cheapest company, but figures used for the comparison must also be stated somewhere, and a clear association with the name of each company

	egular) mark scheme – Version 1.0			
Question	Working	Answer	Mark	Notes
	OR 2.25 - 1.5 = 0.75 $0.075 \times 60 \div 100 = 0.45$ 0.80 + 0.45 = 1.25 1.25 < 1.90			OR M1 for correct method to find percentage of $(60 + \text{booking fee})$ e.g. $0.0225 \times 60.8 (= 1.368)$ oe or $0.015 \times 61.9 (= 0.9285)$ M1 (dep) for correct method to find total cost or total additional cost e.g. '1.368' + $60.8 (= 62.168)$ or '1.368' + $0.8 (= 2.168)$ or '0.9285' + $61.9 (= 62.8285)$ or '0.9285' + $1.9 (= 2.8285)$ A1 for 62.168 or 62.17 AND 62.8285 or 62.83 OR 2.168 or 2.17 AND 2.8285 or 2.83 C1 (dep on M1) for a statement deducing the cheapest company, but figures used for the comparison must also be stated somewhere, and a clear association with the name of each company OR M1 for correct method to find difference in cost of credit card charge e.g. $(2.25 - 1.5) \times 60 \div 100$ oe or 0.45 seen M1 (dep) for using difference with booking fee or finding difference between booking fees e.g. $0.80 + "0.45"(= 1.25)$ or 1.90 - "0.45" (= 1.45) or $1.90 - 0.8 (= 1.1(0))A1 1.25 and 1.9(0) or 0.45 and 1.1(0)C1 (dep on M1) for a statement deducing the cheapestcompany, but figures used for the comparison must also bestated somewhere, and a clear association with the name ofeach companyQWC: Decision and justification should be clear with workingclearly presented and attributable$

	1MA1 Practice papers Set 3: Paper 1H (Regular) mark scheme – Version 1.0							
Que	stion	Working	Answer	Mark	Notes			
5.	(<i>a</i>)		Correct	2	B2 for fully correct polygon.			
			frequency polygon		Points plotted at the midpoints $\pm \frac{1}{2}$ square			
					(B1 for all points plotted accurately not joined or one error or one omission in plotting but joined) or all points plotted accurately and joined with first joined to last or all points at the correct heights and consistently within or at the ends of the intervals and joined (can include joining last to first to make a polygon)			
	<i>(b)</i>	20 + 12 + 10 + 8 + 6	56	2	M1 for $20 + 12 + 10 + 8 + 6$			
					A1 cao			
	(<i>c</i>)		$0 \leq L < 10$	1	B1 for $0 \le L < 10$ oe			

		1MA1 Pract	tice papers Set 3: Paj	per 1H (R	egular) mark scheme – Version 1.0
Ques	tion	Working	Answer	Mark	Notes
6.		Area of circle B is 110% of the area of circle A	21% or 42 cm ²	4	B1 110% seen M1 $\frac{110}{100} \times 110$ oe
		Area of circle C is 110% of 110% = 121% of the			A1 121%
		area of circle A.			C1 dep on M1 for 21% bigger oe
					OR
		OR			B1 220 shown
		Area of circle B is 220 cm ²			$M1\frac{110}{100} \times 220$
		Area of circle C is 242			A1 242
		cm ²			C1 dep on M1 for area is 42 cm ² bigger oe
					OR
		Area of circle B is 1.1			B1 for 1.1 seen
		times bigger			M1 for 1.1×1.1
		Area of circle C is 1.1 \times			A1 for 1.21
		1.1 = 1.21 times bigger			C1 dep on M1 for 21% larger or 1.21 times larger o.e.
7.	(<i>a</i>)	2x + 6y + 4x - 4y	6x + 2y	2	M1 for $2x + 6y$ or $4x - 4y$ or $6x$ or $2y$
					A1 for $6x + 2y$ [accept $2(3x + y)$]
	(<i>b</i>)	$2 \times 4 \times p - 3 \times 4 \times p \times q$	4p(2 - 3q)	2	B2 cao
					[B1 for $2p(4-6q)$ or $p(8-12q)$ or $4(2p-3pq)$ or
					$2(4p-6pq)$ or $4p(a+bq)$ where $a \neq 0$ and $b \neq 0$]

		1MA1 Pract	tice papers Set 3: Pap	per 1H (R	egular) mark scheme – Version 1.0
Que	stion	Working	Answer	Mark	Notes
8.			"two angles are	5	M1 for $6x - 10 + 4x + 8 + 5x + 2$ or $15x$
			equal so the triangle		M1 for $6x - 10 + 4x + 8 + 5x + 2 = 180$ or $15x = 180$ or $(x =)$ 180 \div 15
			is isosceles"		A1 $x = 12$
					M1 (ft from '12' if M2 scored) for $5 \times '12' + 2$ or $6 \times '12' - 10$ or $62(^{\circ})$ or $4 \times '12' + 8$ or $56(^{\circ})$
					C1 both base angles as 62 and two angles are equal so the triangle is isosceles
					NB. $x = 12$ with no working scores M0M0A0 ; correct value of <i>x</i> from clear trial and improvement could gain M1M1A1
					OR
					M1 $5x + 2 = 6x - 10$ or $2 + 10 = 6x - 5x$
					A1 $x = 12$
					M1 $5 \times 12 + 2$ or $6 \times 12 - 10$ or $62(^{\circ})$ or $4 \times 12 + 8$ or $56(^{\circ})$
					M1 checking their angles add to 180°, "62"+"62"+"56"= 180
					C1 both base angles as 62 and two angles are equal so the triangle is isosceles
					OR
					M1 $4x + 8 = 5x + 2$ oe or $4x + 8 = 6x - 10$
					A1 $x = 6$ or $x = 9$
					M1 (dep) for substituting ' x ' into one of the angles oe
					M1 for showing their angles do not sum to 180°
					СО

	1MA1 Practice papers Set 3: Paper 1H (Regular) mark scheme – Version 1.0							
Que	stion	Working	Answer	Mark	Notes			
9.	(<i>a</i>)	$30 = 2 \times 3 \times 5$ $42 = 2 \times 3 \times 7$ HCF = 2 × 3	6	2	M1 for 30 or 42 written correctly as a product of prime factors or attempt to list the factors of 30 and 42 (at least 4 for each including 6) A1 for HCF = 6			
	(<i>b</i>)	30 , 60, 90, 45, 90, 135,	90	2	M1 for listing multiples of 30 and 45 (at least 60 and 90) or $2 \times 3 \times 5 \times 3$ A1 for LCM = 90 SC B1 for 210			
10.		$\frac{1}{2}(12+8) \times 6 = 60$ $60' \times 20 = 1200$ $1200 \times 5 = 6000$ $6000 \div 1000 = 6$	6	5	M1 $\frac{1}{2}(12+8) \times 6$ oe or 60 seen M1 (dep) '60' × 20 M1 (indep) '1200' × 5 A1 6000 cao A1 ft (dep on 1 st or 3 rd M1 scored) for 6			

		1MA1 Prac	tice papers Set 3: Pap	per 1H (R	egular) mark scheme – Version 1.0
Que	stion	Working	Answer	Mark	Notes
11.	(<i>a</i>)		1	1	B1 cao
	(<i>b</i>)		$\frac{1}{7}$	1	B1 for $\frac{1}{7}$ (condone $\pm \frac{1}{7}$)
	(c)	$\frac{2^3 \div 2^3}{2^{4^3}} = \frac{2^5}{2^{12}}$	2^{-7}	3	M1 for writing one of the numbers correctly as a power of 2
					M1 for $2^{2'} \times 2^{3'} = 2^{2'+3'} (= 2^5)$ or $(2^{4'})^3 = 2^{4'\times 3} (= 2^{12})$
					or $\frac{2^{5'}}{2^{12'}} = 2^{5'-12'}$
					A1 for 2^{-7} or $\frac{1}{2^{-7}}$
					OR
		OR			B1 for $\frac{1}{16^2}$ or an equivalent fraction with a numerator of 2
		$\frac{2\times 16}{16\times 16\times 16} =$			M1 for $2^{4'} \times 2^{4'} = 2^{4'+4'} (= 2^8)$ or $\frac{2^{7'}}{2^{8'}} = 2^{7'-8'}$
		$\frac{2}{16 \times 16} = \frac{2}{2^4 \times 2^4} = \frac{2}{2^8}$			A1 for 2^{-7} or $\frac{1}{2^{7}}$
					[SC: B1 for an answer of $\frac{1}{128}$ if M0 scored]

	1MA1 Prac	tice papers Set 3: Pap	per 1H (R	egular) mark scheme – Version 1.0
Question	Working	Answer	Mark	Notes
12.	yy + yy' + y'y $\frac{3}{9} \times \frac{2}{8} + \frac{3}{9} \times \frac{6}{8} + \frac{6}{9} \times \frac{3}{8}$ OR	$\frac{42}{72}$	4	B1 for $\frac{2}{8}$ or $\frac{3}{8}$ or $\frac{4}{8}$ or $\frac{6}{8}$ or $\frac{5}{8}$ seen as 2nd probability M1 for any one appropriate product (see working column) M1 for a complete method
	yy + yr + yb + ry + by $\frac{3}{9} \times \frac{2}{8} + \frac{3}{9} \times \frac{4}{8} + \frac{3}{9} \times \frac{2}{8} + \frac{3}{9} \times \frac$			A1 for $\frac{42}{72}$ oe, eg $\frac{7}{12}$
	$\frac{4}{9} \times \frac{3}{8} + \frac{2}{9} \times \frac{3}{8}$ OR			With replacement B0
	1 - y' y'			M1 for any one appropriate product M1 for a complete method A0
	$1-\frac{6}{9}\times\frac{5}{8}$			
13.	$\frac{(2x-1)(x-3)}{(x+3)(x-3)}$	$\frac{(2x-1)}{(x+3)}$	3	M1 for $(2x - 1)(x - 3)$ M1 for $(x + 3)(x - 3)$ A1 cao
14.	$(2 + \sqrt{3})(2 - \sqrt{3}) = 4 - 2\sqrt{3} + 2\sqrt{3} - \sqrt{3}\sqrt{3}$	1	2	M1 for all 4 terms correct ignoring signs or 3 out of 4 terms with correct signs or correct use of difference of 2 squares
	= 4 - 3			A1 cao (SC M1 for $4 - 2\sqrt{3} + 2\sqrt{3}$)

		1MA1 Pract	tice papers Set 3: Paj	egular) mark scheme – Version 1.0	
Que	stion	Working	Answer	Mark	Notes
15.			Proof	3	M1 for $\overrightarrow{MN} = \overrightarrow{MO} + \overrightarrow{ON} (= \mathbf{n} - \mathbf{m})$
					or $\overrightarrow{NM} = \overrightarrow{OM} + \overrightarrow{NO} (= \mathbf{m} - \mathbf{n})$
					or $\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB} (= 2\mathbf{n} - 2\mathbf{m})$ or $\overrightarrow{BA} = \overrightarrow{OA} + \overrightarrow{BO}$
					(= 2m - 2n)
					M1 for $\overrightarrow{MN} = \mathbf{n} - \mathbf{m}$ and $\overrightarrow{AB} = 2\mathbf{n} - 2\mathbf{m}$ oe
					C1 (dep on M1, M1) for fully correct proof, with $\overrightarrow{AB} = 2\overrightarrow{MN}$
					or \overrightarrow{AB} is a multiple of \overrightarrow{MN}
					[SC M1 for $\overrightarrow{MN} = 0.5\mathbf{n} - 0.5\mathbf{m}$ and $\overrightarrow{AB} = \mathbf{n} - \mathbf{m}$]
					C1 (dep on M1) for fully correct proof, with $\overrightarrow{AB} = 2\overrightarrow{MN}$
					or \overrightarrow{AB} is a multiple of of \overrightarrow{MN}]

		1MA1 Prac	tice papers Set 3: Pap	per 1H (R	egular) mark scheme – Version 1.0
Question		Working	Answer	Mark	Notes
16.		360 – y	$180 - \frac{y}{2}$	4	$M1 ADC = \frac{y}{2}$
					A1 180 - $\frac{y}{2}$
					C2 (dep on M1) for both reasons
					Angle at centre is twice the angle at the circumference
					Opposite angles in cyclic quadrilateral add to 180°
					(C1 (dep on M1) for one appropriate circle theorem reason)
					OR
					M1 reflex $AOC = 360 - y$
					A1 $\frac{360 - y}{2}$ oe
					C2 (dep on M1) for both reasons
					<u>Angles</u> around a <u>point</u> add up to <u>360°</u>
					Angle at centre is twice the angle at the circumference
					(C1 (dep on M1) for one appropriate circle theorem reason)
17.	<i>(a)</i>		(5,-4)	2	B2 for (5,-4)
					(B1 for (<i>a</i> ,-4) or (5, <i>b</i>) where $a \neq 5$ or 3 and $b \neq -4$).
	<i>(b)</i>		(-2,2)	2	B2 for (-2,2)
					(B1 for $(a,2)$ or $(-2,b)$ where $a \neq -2$ and $b \neq 2$).

	1MA1 Practice papers Set 3: Paper 1H (Regular) mark scheme – Version 1.0						
Que	stion	Working	Answer	Mark	Notes		
18.		ABE = angle CBD (vertically opposite angles)	proof	4	M1 for any 2 pairs of angles correctly matched A1 for all 3 pairs correctly matched		
		angle <i>EAB</i> = angle <i>CDB</i> (alternate angles)			C2 (dep on M1)for full reasons and concluding statement (C1(dep on M1) for at least one reason)		
		angle <i>AEB</i> = angle <i>BCD</i> (alternate angles)					
		OR					
		angle <i>EAB</i> = angle <i>CDB</i> (alternate angles)					
		angle <i>AEB</i> = angle <i>BCD</i> (alternate angles)					
		ABE = angle $CBD(angles in a triangle sumto 180^{\circ})$					
19.	(<i>a</i>)(i)		$\frac{\sqrt{3}}{2}$	2	B1 cao		
	(ii)		$\frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2}$		B1 cao		
	<i>(b)</i>			2	B2 cao		
					[B1 for sine curve starting from the origin with amplitude 4, OR		
					B1 cuts <i>x</i> axis at 90, 180, 270, 360 and starts from 0]		

	1MA1 Practice papers Set 3: Paper 1H (Regular) mark scheme – Version 1.0										
Question	Working	Answer	Mark	Notes							
20.	$(n + 1)^2 - n^2$ = $n^2 + 2n + 1 - n^2$	proof	4	M1 for any two consecutive integers expressed algebraically e.g. n and $n + 1$							
	= 2n + 1 (n + 1) + n = 2n + 1			M1 (dep on M1) for the difference between the squares of 'two consecutive integers' expressed algebraically e.g. $(n + 1)^2 - n^2$							
	OR $(n+1)^2 - n^2$			A1 for correct expansion and simplification of difference of squares, e.g. $2n + 1$							
	= (n + 1 + n)(n + 1 - n) = (2n + 1)(1) = 2n + 1			C1 (dep on M2A1) for showing statement is correct, e.g. $n + n + 1 = 2n + 1$ and $(n + 1)^2 - n^2 = 2n + 1$ from correct							
	(n+1) + n = 2n + 1 OR			supporting algebra							
	$n^{2} - (n + 1)^{2} =$ $n^{2} - (n^{2} + 2n + 1) =$ -2n - 1 = -(2n + 1)										
	Difference is $2n + 1$										
	(n+1) + n = 2n+1										

1MA1 Practice papers Set 3: Paper 1H (Regular) mark scheme – Version 1.0									
Question Working		Answer	Mark	Notes					
21.		Answer	4	M1 for $-((x + 1.5)^2 - (1.5)^2 - 5)$ or attempt to find points to plot - must have at least 3 correct points evaluated or correct method to find x axis intercepts A1 for $-((x + 1.5)^2 - 7.25)$ or parabola with marximum marked at (-1.5, 7.25) or $\frac{3 \pm \sqrt{29}}{2}$ C1 for parabola drawn with maximum in 2nd quadrant or y intercept (0, 5) or with x axis intercepts at $\left(\frac{3 \pm \sqrt{29}}{2}, 0\right)$					
				C1 for parabola drawn with maximum (-1.5, 7.25) and y intercept (0, 5) and x axis intercepts at $\left(\frac{3 \pm \sqrt{29}}{2}, 0\right)$					

National performance da	ata taken from Results Plus
-------------------------	-----------------------------

						Max	Mean							
Qu No	Spec	Paper	Session	Qu	Торіс	score	% all	ALL	A *	Α	В	С	D	E
1	5MM1	1H	1111	Q10	Gradients	2	66	1.32	1.88	1.87	1.44	0.83	0.36	0.00
2	5MM1	1H	1206	Q16	Fractions	3	65	1.94	2.90	2.67	2.31	1.32	0.45	0.07
3	1MA0	1F	1511	Q19	Ratio	3	39	1.17				1.55	1.25	0.95
4	1MA0	1H	1206	Q10	Percentages	4	55	2.19	3.64	3.20	2.70	1.78	0.54	0.16
5	1380	1F	1203	Q21	Frequency diagrams	5	40	2.02	5.00	4.50	4.00	3.03	2.38	1.74
6	5MM2	2H	1206	Q14	Percentages	4	85	3.41	3.89	3.72	3.57	3.15	2.12	0.44
7	5MM1	1H	1106	Q08	Simplify expressions	4	68	2.71	3.82	3.64	3.23	2.44	1.45	1.00
8	5MM1	1H	1306	Q11	Solve linear equations	5	53	2.65	4.73	4.35	3.18	1.44	0.45	0.00
9	5MM1	1H	1206	Q12	HCF and LCM	4	70	2.79	3.67	3.37	2.85	2.29	1.72	1.27
10	1380	1H	1111	Q16	Compound measures	5	18	0.91	4.14	2.74	1.30	0.36	0.09	0.05
11	5MM1	1H	1106	Q12	Index laws	5	29	1.43	4.63	2.86	1.28	0.65	0.32	0.14
12	5MM1	1H	1406	Q24	Selection with or without replacement	4	45	1.81	3.50	2.86	1.92	0.78	0.18	0.11
13	5MM1	1H	1211	Q25	Simplify algebraic fractions	3	25	0.74	2.69	1.88	0.84	0.07	0.00	0.00
14	1380	1H	911	Q21	Surds	2	24	0.47	1.83	1.23	0.46	0.09	0.02	0.01
15	1MA0	1H	1406	Q24	Vectors	3	20	0.59	2.58	1.74	0.52	0.05	0.00	0.00
16	1MA0	1H	1311	Q22	Circle theorems	4	16	0.65	3.19	1.98	0.65	0.09	0.01	0.00
17	1380	1H	911	Q24	Transformation of functions	4	21	0.83	3.56	1.87	0.64	0.24	0.15	0.13
18	5MM1	1H	1311	Q21	Congruence and similarity	4	20	0.80	2.52	1.38	0.82	0.34	0.09	0.00
19	2540	1H	811	Q27	Graphs of trigonometric functions	4	13	0.52	2.69	1.31	0.52	0.18	0.08	0.07
20	1MA0	1H	1303	Q21	Algebraic proof	4	3	0.11	2.09	0.38	0.03	0.00	0.00	0.00
21		NEW QUESTION Turning point of quadratic function		4	No data available									
						80								