1MA1 Practice papers Set 3: Paper 1H (Regular) mark scheme - Version 1.0					
	ion	Working	Answer	Mark	Notes
1.	(a) (b)		$\begin{gathered} 4 \\ 7 \text { or }(0,7) \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	B1 cao B1 cao
2.		$\frac{25}{8}-\frac{5}{3}=\frac{75-40}{24}=\frac{35}{24}$ OR $\begin{aligned} & 2 \frac{1}{8}-\frac{2}{3}=2 \frac{3-16}{24} \\ & =1 \frac{27-1}{24} \end{aligned}$ OR $\begin{aligned} & 2 \frac{1}{8}-\frac{2}{3}=2 \frac{3-16}{24} \\ & =2 \frac{-13}{24} \end{aligned}$	$1 \frac{11}{24}$	3	M1 for converting to improper fractions, at least one correct or 3-1 = 2 and 'borrowing' or negative fraction answer M1 for putting fractions over a common denominator, at least one correct A1 for $\frac{35}{24}$ or $1 \frac{11}{24}$

1MA1 Practice papers Set 3: Paper 1H (Regular) mark scheme - Version 1.0					
Question	Working		Answer	Mark	Notes

1MA1 Practice papers Set 3: Paper 1H (Regular) mark scheme - Version 1.0				
Question	Working	Answer	Mark	Notes
	$\begin{array}{\|l} \text { OR } \\ 2.25-1.5=0.75 \\ 0.075 \times 60 \div 100=0.45 \\ 0.80+0.45=1.25 \\ 1.25<1.90 \end{array}$			OR M1 for correct method to find percentage of ($60+$ booking fee) e.g. $0.0225 \times 60.8(=1.368)$ oe or $0.015 \times 61.9(=0.9285)$ M1 (dep) for correct method to find total cost or total additional cost e.g. '1.368' $+60.8(=62.168)$ or '1.368' $+0.8(=2.168)$ or ' 0.9285 ' $+61.9(=62.8285)$ or ' 0.9285 ' $+1.9(=2.8285)$ A1 for 62.168 or 62.17 AND 62.8285 or 62.83 OR 2.168 or 2.17 AND 2.8285 or 2.83 C1 (dep on M1) for a statement deducing the cheapest company, but figures used for the comparison must also be stated somewhere, and a clear association with the name of each company OR M1 for correct method to find difference in cost of credit card charge e.g. $(2.25-1.5) \times 60 \div 100$ oe or 0.45 seen M1 (dep) for using difference with booking fee or finding difference between booking fees e.g. $0.80+$ " 0.45 " $(=1.25)$ or $1.90-" 0.45$ " $(=1.45)$ or $1.90-0.8(=1.1(0))$ A1 1.25 and $1.9(0)$ or 0.45 and 1.1 (0) C1 (dep on M1) for a statement deducing the cheapest company, but figures used for the comparison must also be stated somewhere, and a clear association with the name of each company QWC: Decision and justification should be clear with working clearly presented and attributable

1MA1 Practice papers Set 3: Paper 1H (Regular) mark scheme - Version 1.0					
Question		Working	Answer	Mark	Notes
5.	(a)		Correct frequency polygon	2	B2 for fully correct polygon. Points plotted at the midpoints $\pm 1 / 2$ square (B1 for all points plotted accurately not joined or one error or one omission in plotting but joined) or all points plotted accurately and joined with first joined to last or all points at the correct heights and consistently within or at the ends of the intervals and joined (can include joining last to first to make a polygon)
	(b)	$20+12+10+8+6$	56	2	M1 for $20+12+10+8+6$ A1 cao
	(c)		$0 \leq L<10$	1	B1 for $0 \leq L<10$ oe

1MA1 Practice papers Set 3: Paper 1H (Regular) mark scheme - Version 1.0					
Question		Working	Answer	Mark	Notes
6.		Area of circle B is 110% of the area of circle A Area of circle C is 110% of $110 \%=121 \%$ of the area of circle A. OR Area of circle B is 220 cm^{2} Area of circle C is 242 cm^{2} Area of circle B is 1.1 times bigger Area of circle C is $1.1 \times$ $1.1=1.21$ times bigger	21% or $42 \mathrm{~cm}^{2}$	4	B1 110\% seen $\text { M1 } \frac{110}{100} \times 110 \mathrm{oe}$ A1 121\% C1 dep on M1 for 21% bigger oe OR B1 220 shown M1 $\frac{110}{100} \times 220$ A1 242 C1 dep on M1 for area is $42 \mathrm{~cm}^{2}$ bigger oe OR B1 for 1.1 seen M1 for 1.1×1.1 A1 for 1.21 C1 dep on M1 for 21% larger or 1.21 times larger o.e.
7.	(a) (b)	$2 x+6 y+4 x-4 y$ $2 \times 4 \times p-3 \times 4 \times p \times q$	$\begin{gathered} 6 x+2 y \\ 4 p(2-3 q) \end{gathered}$	2 2	M1 for $2 x+6 y$ or $4 x-4 y$ or $6 x$ or $2 y$ A1 for $6 x+2 y$ [accept $2(3 x+y)$] B2 cao [B1 for $2 p(4-6 q)$ or $p(8-12 q)$ or $4(2 p-3 p q)$ or $2(4 p-6 p q)$ or $4 p(a+b q)$ where $a \neq 0$ and $b \neq 0$]

1MA1 Practice papers Set 3: Paper 1H (Regular) mark scheme - Version 1.0					
Question		Working	Answer	Mark	Notes
8.			"two angles are equal so the triangle is isosceles"	5	M1 for $6 x-10+4 x+8+5 x+2$ or $15 x$ M1 for $6 x-10+4 x+8+5 x+2=180$ or $15 x=180$ or $(x=) 180 \div 15$ A1 $x=12$ M1 (ft from '12' if M2 scored) for $5 \times$ ' 12 ' +2 or $6 \times$ ' 12 ' -10 or $62\left({ }^{\circ}\right)$ or $4 \times$ '12' +8 or $56\left({ }^{\circ}\right)$ C 1 both base angles as 62 and two angles are equal so the triangle is isosceles NB. $x=12$ with no working scores M0M0A0; correct value of x from clear trial and improvement could gain M1M1A1 OR M1 $5 x+2=6 x-10$ or $2+10=6 x-5 x$ A1 $x=12$ M1 $5 \times 12+2$ or $6 \times 12-10$ or $62\left({ }^{\circ}\right)$ or $4 \times 12+8$ or $56\left({ }^{\circ}\right)$ M1 checking their angles add to 180°, " 62 " + " 62 " + " 56 " $=180$ C1 both base angles as 62 and two angles are equal so the triangle is isosceles OR M1 $4 x+8=5 x+2$ oe or $4 x+8=6 x-10$ A1 $x=6$ or $x=9$ M1 (dep) for substituting ' x ' into one of the angles oe M1 for showing their angles do not sum to 180° C0

1MA1 Practice papers Set 3: Paper 1H (Regular) mark scheme - Version 1.0					
Question		Working	Answer	Mark	Notes
9.	(a) (b)	$\begin{aligned} & 30=2 \times 3 \times 5 \\ & 42=2 \times 3 \times 7 \\ & \mathrm{HCF}=2 \times 3 \\ & \\ & 30,60,90, \ldots \\ & 45,90,135, \ldots \end{aligned}$	6 90	2 2	M1 for 30 or 42 written correctly as a product of prime factors or attempt to list the factors of 30 and 42 (at least 4 for each including 6) A 1 for $\mathrm{HCF}=6$ M1 for listing multiples of 30 and 45 (at least 60 and 90) or $2 \times 3 \times 5 \times 3$ A1 for $\mathrm{LCM}=90$ SC B1 for 210
10.		$\begin{aligned} & 1 / 2(12+8) \times 6=60 \\ & ‘ 60 \times 20=1200 \\ & 1200 \times 5=6000 \\ & 6000 \div 1000=6 \end{aligned}$	6	5	M1 $1 / 2(12+8) \times 6$ oe or 60 seen M1 (dep) ' 60 ' $\times 20$ M1 (indep) ' 1200 ' $\times 5$ A1 6000 cao A1 ft (dep on $1^{\text {st }}$ or $3^{\text {rd }}$ M1 scored) for 6

1MA1 Practice papers Set 3: Paper 1H (Regular) mark scheme - Version 1.0					
Question		Working	Answer	Mark	Notes
11.	(a)		1	1	B1 cao
	(b)		$\frac{1}{7}$	1	$\text { B1 for } \frac{1}{7} \text { (condone } \pm \frac{1}{7} \text {) }$
	(c)	$\frac{2^{3} \div 2^{3}}{2^{4^{3}}}=\frac{2^{5}}{2^{12}}$	2^{-7}	3	M1 for writing one of the numbers correctly as a power of 2
					M1 for $2^{2^{\prime}} \times 2^{3^{\prime}}=2^{22^{\prime}+3^{\prime}}\left(=2^{5}\right)$ or $\left(2^{\left.2^{4}\right)^{3}}\right)^{3}=2^{4^{4 \times 3}}\left(=2^{12}\right)$ or $\frac{2^{\prime 5^{\prime}}}{2^{12^{\prime}}}=2^{.55^{\prime}-12^{\prime}}$
					A1 for 2^{-7} or $\frac{1}{2^{-7}}$ OR
		OR			B1 for $\frac{1}{16^{2}}$ or an equivalent fraction with a numerator of 2
		$\frac{2 \times 16}{16 \times 16 \times 16}=$			M1 for $2^{\prime 4^{\prime}} \times 2^{\prime 4^{\prime}}=2^{\prime 4^{4}+4^{\prime}}\left(=2^{8}\right)$ or $\frac{2^{\mathrm{TH}^{\prime}}}{2^{8^{\prime}}}=2^{\mathrm{T}^{1-8^{\prime}}}$
		$\frac{2}{16 \times 16}=\frac{2}{2^{4} \times 2^{4}}=\frac{2}{2^{8}}$			$\text { A1 for } 2^{-7} \text { or } \frac{1}{2^{7}}$
					[SC: B1 for an answer of $\frac{1}{128}$ if M0 scored]

1MA1 Practice papers Set 3: Paper 1H (Regular) mark scheme - Version 1.0				
Qu	Working	Answer	Mark	Notes
12.	$\begin{aligned} & y y+y y^{\prime}+y^{\prime} \mathbf{y} \\ & \frac{3}{9} \times \frac{2}{8}+\frac{3}{9} \times \frac{6}{8}+\frac{6}{9} \times \frac{3}{8} \end{aligned}$ OR $\begin{aligned} & \mathbf{y y}+\mathbf{y r}+\mathbf{y b}+\mathbf{r y}+\mathbf{b y} \\ & \frac{3}{9} \times \frac{2}{8}+\frac{3}{9} \times \frac{4}{8}+\frac{3}{9} \times \frac{2}{8}+ \\ & \frac{4}{9} \times \frac{3}{8}+\frac{2}{9} \times \frac{3}{8} \end{aligned}$ OR $1-y^{\prime} y^{\prime}$ $1-\frac{6}{9} \times \frac{5}{8}$	$\frac{42}{72}$	4	B1 for $\frac{2}{8}$ or $\frac{3}{8}$ or $\frac{4}{8}$ or $\frac{6}{8}$ or $\frac{5}{8}$ seen as 2nd probability M1 for any one appropriate product (see working column) M1 for a complete method A1 for $\frac{42}{72}$ oe, eg $\frac{7}{12}$ With replacement B0 M1 for any one appropriate product M1 for a complete method A0
13.	$\frac{(2 x-1)(x-3)}{(x+3)(x-3)}$	$\frac{(2 x-1)}{(x+3)}$	3	M1 for $(2 x-1)(x-3)$ M1 for $(x+3)(x-3)$ A1 cao
14.	$\begin{aligned} & (2+\sqrt{ } 3)(2-\sqrt{3}) \\ & =4-2 \sqrt{3}+2 \sqrt{ } 3-\sqrt{ } 3 \sqrt{ } 3 \\ & =4-3 \end{aligned}$	1	2	M1 for all 4 terms correct ignoring signs or 3 out of 4 terms with correct signs or correct use of difference of 2 squares A1 cao (SC M1 for $4-2 \sqrt{ } 3+2 \sqrt{ } 3$)

1MA1 Practice papers Set 3: Paper 1H (Regular) mark scheme - Version 1.0					
Question		Working	Answer	Mark	Notes
15.			Proof	3	M 1 for $\overrightarrow{M N}=\overrightarrow{M O}+\overrightarrow{O N}(=\mathbf{n}-\mathbf{m})$ or $\overrightarrow{N M}=\overrightarrow{O M}+\overrightarrow{N O}(=\mathbf{m}-\mathbf{n})$ or $\overrightarrow{A B}=\overrightarrow{A O}+\overrightarrow{O B}(=2 \mathbf{n}-2 \mathbf{m})$ or $\overrightarrow{B A}=\overrightarrow{O A}+\overrightarrow{B O}$ ($=2 \mathbf{m}-2 \mathbf{n}$) M 1 for $\overrightarrow{M N}=\mathbf{n}-\mathbf{m}$ and $\overrightarrow{A B}=2 \mathbf{n}-2 \mathbf{m}$ oe C 1 (dep on M1, M1) for fully correct proof, with $\overrightarrow{A B}=2 \overrightarrow{M N}$ or $\overrightarrow{A B}$ is a multiple of $\overrightarrow{M N}$ [SC M1 for $\overrightarrow{M N}=0.5 \mathbf{n}-0.5 \mathbf{m}$ and $\overrightarrow{A B}=\mathbf{n}-\mathbf{m}$] C 1 (dep on M1) for fully correct proof, with $\overrightarrow{A B}=2 \overrightarrow{M N}$ or $\overrightarrow{A B}$ is a multiple of of $\overrightarrow{M N}]$

1MA1 Practice papers Set 3: Paper 1H (Regular) mark scheme - Version 1.0					
Question		Working	Answer	Mark	Notes
16.		$360-y$	$180-\frac{y}{2}$	4	$\mathrm{M} 1 A D C=\frac{y}{2}$ A1 $180-\frac{y}{2}$ C2 (dep on M1) for both reasons Angle at centre is twice the angle at the circumference Opposite angles in cyclic quadrilateral add to 180° (C1 (dep on M1) for one appropriate circle theorem reason) OR M1 reflex $A O C=360-y$ A1 $\frac{360-y}{2}$ oe C2 (dep on M1) for both reasons Angles around a point add up to 360° Angle at centre is twice the angle at the circumference (C1 (dep on M1) for one appropriate circle theorem reason)
17.	(a) (b)		$\begin{aligned} & (5,-4) \\ & (-2,2) \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	B2 for (5,-4) (B1 for $(a,-4)$ or $(5, b)$ where $a \neq 5$ or 3 and $b \neq-4$). B2 for $(-2,2)$ (B1 for $(a, 2)$ or $(-2, b)$ where $a \neq-2$ and $b \neq 2$).

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|r|}{1MA1 Practice papers Set 3: Paper 1H (Regular) mark scheme - Version 1.0} \\
\hline Que \& tion \& Working \& Answer \& Mark \& Notes \\
\hline 18. \& \& ```
\(A B E=\) angle \(C B D\)
(vertically opposite
angles)
angle \(E A B=\) angle \(C D B\)
(alternate angles)
angle \(A E B=\) angle \(B C D\)
(alternate angles)
OR
angle \(E A B=\) angle \(C D B\)
(alternate angles)
angle \(A E B=\) angle \(B C D\)
(alternate angles)
\(A B E=\) angle \(C B D\)
(angles in a triangle sum
to \(180^{\circ}\))
``` \& proof \& 4 \& \begin{tabular}{l}
M1 for any 2 pairs of angles correctly matched \\
A1 for all 3 pairs correctly matched \\
C2 (dep on M1)for full reasons and concluding statement \\
( C 1 (dep on M 1 ) for at least one reason)
\end{tabular} \\
\hline 19. \& \begin{tabular}{l}
\[
(a)(\mathrm{i})
\] \\
(ii) \\
(b)
\end{tabular} \& \& \(\frac{\sqrt{3}}{2}\)
\[
-\frac{\sqrt{3}}{2}
\] \& 2

2 \& | B1 cao |
| :--- |
| B1 cao |
| B2 cao |
| [B1 for sine curve starting from the origin with amplitude 4, OR |
| B1 cuts $x$ axis at $90,180,270,360$ and starts from 0 ] | \\

\hline
\end{tabular}

## 1MA1 Practice papers Set 3: Paper 1H (Regular) mark scheme - Version 1.0

| 1MA1 Practice papers Set 3: Paper 1H (Regular) mark scheme - Version 1.0 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Qu | Working | Answer | Mark | Notes |
| 20. | $\begin{aligned} & (n+1)^{2}-n^{2} \\ & =n^{2}+2 n+1-n^{2} \\ & =2 n+1 \\ & (n+1)+n=2 n+1 \end{aligned}$ <br> OR $\begin{aligned} & (n+1)^{2}-n^{2} \\ & =(n+1+n)(n+1-n) \\ & =(2 n+1)(1)=2 n+1 \\ & (n+1)+n=2 n+1 \end{aligned}$ <br> OR $\left\lvert\, \begin{aligned} & n^{2}-(n+1)^{2}= \\ & n^{2}-\left(n^{2}+2 n+1\right)= \\ & -2 n-1=-(2 n+1) \end{aligned}\right.$ <br> Difference is $2 n+1$ $(n+1)+n=2 n+1$ | proof | 4 | M1 for any two consecutive integers expressed algebraically <br> e.g. $n$ and $n+1$ <br> M1 (dep on M1) for the difference between the squares of 'two consecutive integers' expressed algebraically e.g. $(n+1)^{2}-n^{2}$ <br> A1 for correct expansion and simplification of difference of squares, e.g. $2 n+1$ <br> C1 (dep on M2A1) for showing statement is correct, e.g. $n+n+1=2 \mathrm{n}+1$ and $(n+1)^{2}-n^{2}=2 \mathrm{n}+1$ from correct supporting algebra |


| 1MA1 Practice papers Set 3: Paper 1H (Regular) mark scheme - Version 1.0 |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :--- | :---: | :---: |
| Question | Working | Answer | Mark | Notes |  |  |  |

National performance data taken from Results Plus

| Qu No | Spec | Paper | Session | Qu | Topic | Max score | $\begin{aligned} & \text { Mean } \\ & \text { \% all } \end{aligned}$ | ALL | A* $^{*}$ | A | B | C | D | E |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5MM1 | 1H | 1111 | Q10 | Gradients | 2 | 66 | 1.32 | 1.88 | 1.87 | 1.44 | 0.83 | 0.36 | 0.00 |
| 2 | 5MM1 | 1H | 1206 | Q16 | Fractions | 3 | 65 | 1.94 | 2.90 | 2.67 | 2.31 | 1.32 | 0.45 | 0.07 |
| 3 | 1MA0 | 1F | 1511 | Q19 | Ratio | 3 | 39 | 1.17 |  |  |  | 1.55 | 1.25 | 0.95 |
| 4 | 1MA0 | 1H | 1206 | Q10 | Percentages | 4 | 55 | 2.19 | 3.64 | 3.20 | 2.70 | 1.78 | 0.54 | 0.16 |
| 5 | 1380 | 1F | 1203 | Q21 | Frequency diagrams | 5 | 40 | 2.02 | 5.00 | 4.50 | 4.00 | 3.03 | 2.38 | 1.74 |
| 6 | 5MM2 | 2 H | 1206 | Q14 | Percentages | 4 | 85 | 3.41 | 3.89 | 3.72 | 3.57 | 3.15 | 2.12 | 0.44 |
| 7 | 5MM1 | 1H | 1106 | Q08 | Simplify expressions | 4 | 68 | 2.71 | 3.82 | 3.64 | 3.23 | 2.44 | 1.45 | 1.00 |
| 8 | 5MM1 | 1H | 1306 | Q11 | Solve linear equations | 5 | 53 | 2.65 | 4.73 | 4.35 | 3.18 | 1.44 | 0.45 | 0.00 |
| 9 | 5MM1 | 1H | 1206 | Q12 | HCF and LCM | 4 | 70 | 2.79 | 3.67 | 3.37 | 2.85 | 2.29 | 1.72 | 1.27 |
| 10 | 1380 | 1H | 1111 | Q16 | Compound measures | 5 | 18 | 0.91 | 4.14 | 2.74 | 1.30 | 0.36 | 0.09 | 0.05 |
| 11 | 5MM1 | 1H | 1106 | Q12 | Index laws | 5 | 29 | 1.43 | 4.63 | 2.86 | 1.28 | 0.65 | 0.32 | 0.14 |
| 12 | 5MM1 | 1H | 1406 | Q24 | Selection with or without replacement | 4 | 45 | 1.81 | 3.50 | 2.86 | 1.92 | 0.78 | 0.18 | 0.11 |
| 13 | 5MM1 | 1H | 1211 | Q25 | Simplify algebraic fractions | 3 | 25 | 0.74 | 2.69 | 1.88 | 0.84 | 0.07 | 0.00 | 0.00 |
| 14 | 1380 | 1H | 911 | Q21 | Surds | 2 | 24 | 0.47 | 1.83 | 1.23 | 0.46 | 0.09 | 0.02 | 0.01 |
| 15 | 1MA0 | 1H | 1406 | Q24 | Vectors | 3 | 20 | 0.59 | 2.58 | 1.74 | 0.52 | 0.05 | 0.00 | 0.00 |
| 16 | 1MA0 | 1H | 1311 | Q22 | Circle theorems | 4 | 16 | 0.65 | 3.19 | 1.98 | 0.65 | 0.09 | 0.01 | 0.00 |
| 17 | 1380 | 1H | 911 | Q24 | Transformation of functions | 4 | 21 | 0.83 | 3.56 | 1.87 | 0.64 | 0.24 | 0.15 | 0.13 |
| 18 | 5MM1 | 1H | 1311 | Q21 | Congruence and similarity | 4 | 20 | 0.80 | 2.52 | 1.38 | 0.82 | 0.34 | 0.09 | 0.00 |
| 19 | 2540 | 1H | 811 | Q27 | Graphs of trigonometric functions | 4 | 13 | 0.52 | 2.69 | 1.31 | 0.52 | 0.18 | 0.08 | 0.07 |
| 20 | 1MA0 | 1H | 1303 | Q21 | Algebraic proof | 4 | 3 | 0.11 | 2.09 | 0.38 | 0.03 | 0.00 | 0.00 | 0.00 |
| 21 | NEW QUESTION |  |  |  | Turning point of quadratic function | 4 | No data available |  |  |  |  |  |  |  |
|  |  |  |  |  |  | 80 |  |  |  |  |  |  |  |  |

