Stoke Newington School & Sixth Form MEDIA ARTS & SCIENCE COLLEGE | Name | | | · · | | | |---------|--|--|-----|--|--| | ivaille | | | | | | # A Level Mathematics Summer Assignment ### Maths A Level Summer Assignment & Transition Work The summer assignment element should take no longer than **2** hours to complete. Your summer assignment for each course must be submitted in the relevant first lesson in September. As a guideline, the transition work element will take 2 hours a week over the summer holiday. This booklet has been produced to help you prepare for A-Level Maths. It is essential that you begin the course having maintained and developed your skills in the higher-level algebra content from the GCSE syllabus. You also need to understand the volume of work that will be required for A-level Maths. Completion of this booklet will provide evidence that you have the commitment and work ethic required. Additionally, this work will prepare you for the base line test in September. INSTRUCTIONS: there are 2 parts to this booklet. Part A: Summer Assignment (submitted in 1st lesson of the year) This must be completed in full **on A4 paper** and handed in to your teacher during the first lesson of the year. Ž. You must **show all workings** and set your work out clearly and logically, clearly labelling each question and sub-question. Do not attempt to complete this on a printout of the assignment – there is not enough room for your full workings and solutions so it must be handed in on A4 paper. The assignment will be marked by your teacher. It should take **no more than 2 hours to complete**, once you have done any necessary revision in advance. The transition work in this booklet will prepare you for your summer assignment. You will also be given a 1-hour baseline test in the first lesson of the year. #### Part B: Transition Work This booklet has been produced by our exam board **Pearson Edexcel** to ensure that all A-Level Maths students across the country begin A level with the algebra skills necessary for the course. You are required to complete **all of this work over the summer**. As well as being compulsory, it will help with any necessary preparation for the summer assignment and the baseline test in the first lesson. - Complete the answers to the exercises on A4 squared paper, with each topic and question number clearly labelled. You must show all working (final answers alone are not accepted). - If you are stuck, use the Key Points and Examples to remind yourself of how to answer the questions. - Answers to all of the questions are at the back of this booklet. You should use these answers to correct all of your work in a different coloured pen. If you have a different answer you are expected to make corrections, again showing all of your methods. Correcting your work is a vital skill in A-level mathematics as it contributes to improving your understanding in key areas To summarise, in September you will be assessed in 3 ways: - 1. Part A: Summer Assignment will be formally marked and graded by your teacher. - 2. Part B: Transition Work should be self-marked and handed in to your teacher. - 1-hour Baseline Test in your first lesson, which will be formally marked and graded by your teacher. Parts A & B of this assignment will help you prepare for this. ### Part A: Summer Assignment (2 hours work) Show that $(x-3)^2(2x+5)$ simplifies to $ax^3 + bx^2 + cx + d$ where a, b, c and d are integers to be found. (3) - Functions f and g are such that f(x) = 4x 5 and $g(x) = \frac{12}{2x + 3}$ - (a) Find the value of g(-5). j, (1) (b) Find gf(x) in the simplest form. (2) © Find the inverse function $g^{-1}(x)$. (2) Sketch the graph of $f(x) = x^2 + 9x + 25$, writing the coordinates of the turning point and the coordinates of any intercepts with the coordinate axes. (3) 4) By completing the square, write the function $f(x) = 2x^2 - 3x - 8$ in the form $f(x) = a(x + b)^2 + c$ where a, b and c are rational numbers to be found. (3) 5) The graph shows the speed, in metres per second, of a car as it approaches a set of traffic lights. Use the graph to estimate the distance travelled by the car in the first 20 seconds. (3) | | A computer uses the iteration $x_{n+1} = \frac{3x_n^2 + 5}{2}$ to find one solution for a quadratic equation. | |-----|---| | 6). | A computer uses the iteration $x_{n+1} = \frac{n}{n}$ to find one solution for a quadratic equation. | | | 9 | (a) What quadratic equation is being solved? (1) (b) Using this iterative formula, with $x_0 = 0$, find a solution to this quadratic equation to 3d.p. (2) 7) Solve $$\frac{x^2 - 16}{3} \ge 2x$$ (3) 8). If a city's population grows by 20% every year, how many years will it take for this city to double in population? (2) 9) The first 5 terms of a quadratic sequence are -4 -5 -2 5 16 Find the expression, in terms of n, for the nth term of this sequence. (3) 10) The following shows the results of a Higher Education Open Day survey of 100 people. - 79 wanted to attend Maths. - 55 wanted to attend Physics - 32 wanted to attend Chemistry - 43 wanted to attend both Maths and Physics - 16 wanted to attend Physics and Chemistry - 18 wanted to attend Maths and Chemistry - 6 do not want to attend any of these subjects (they want to choose different subjects altogether) Find the probability that a randomly selected person from the survey wants to attend all three of these subjects. (4) 11) Using the quadratic formula, find all the solutions to $2x^2 - x - 5 = 0$. (2) 12). The graph shows the speed of a motorbike over a period of 1.5 minutes. (a) Between which times was the acceleration the greatest? (1) (b) Find the value of this acceleration. (2) 13) The graph shows the speed, in micrometres per second, of a snail crossing a garden path during a hot summer day. Work out the average deceleration of the snail in the first 600 seconds. (2) (3) 15. ABD is a right angled triangle. Diagram NOT accurately drawn All measurements are given in centimetres. C is the point on BD such that $CD = \frac{\sqrt{3}}{3}$ $$AD = BD = \frac{\sqrt{2}}{2}$$ Work out the exact area, in cm², of the shaded region. | 16. | (a) Find the valu | ue of $\sqrt[3]{8 \times 10^6}$ |
cm²
(3) | |-----|-------------------|--|----------------| | (b) | Find the value of | $144^{\frac{1}{2}} \times 64^{-\frac{1}{3}}$ | (sp.) | (c) Solve $3^{2x} = \frac{1}{81}$ x = (2) | 17. | | |----------------------------------|-----| | (a) Simplify $a^4 \times a^3$ | | | | | | | | | | (1) | | (b) Simplify $(b^2)^7$ | | | | | | | | | | (1) | | (c) Write down the value of 30 | 0 | | (6) 111113 40111 1113 14114 1113 | | | | | | | | | (d) Write down the value of 4 | | | (a) write down the value of 4 | | (1) 6 # Part B: Transition Work (Answers at end but you must show working) ### **Expanding brackets & simplifying expressions** #### A LEVEL LINKS Scheme of work: 1a. Algebraic expressions - basic algebraic manipulation, indices and surds ### Key points - When you expand one set of brackets you must multiply everything inside the bracket by what is outside. - When you expand two linear expressions, each with two terms of the form ax + b, where $a \neq 0$ and $b \neq 0$, you create four terms. Two of these can usually be simplified by collecting like terms. ### **Examples** **Example 1** Expand 4(3x-2) | 4(3x-2) = 12x - 8 | Multiply everything inside the bracket by the 4 outside the bracket | |-------------------|---| **Example 2** Expand and simplify 3(x+5) - 4(2x+3) | 3(x+5) - 4(2x+3) $= 3x + 15 - 8x - 12$ | 1 Expand each set of brackets separately by multiplying $(x + 5)$ by 3 and $(2x + 3)$ by -4 | |--|---| | =3-5x | 2 Simplify by collecting like terms: $3x - 8x = -5x$ and $15 - 12 = 3$ | **Example 3** Expand and simplify (x + 3)(x + 2) $$(x+3)(x+2)$$ $$= x(x+2) + 3(x+2)$$ $$= x^2 + 2x + 3x + 6$$ $$= x^2 + 5x + 6$$ 1 Expand the brackets by multiplying $(x+2)$ by x and $(x+2)$ by x and $(x+2)$ by x and x and x and x and x are x by x and x and x are x and x are x are x are x are x and x are x are x are x and x are x are x are x are x are x and x are x are x are x are x are x and x are x are x and x are and x are x are x are x are x are x and x are and x are x are x and x are x are x are x are x and x are and x are x are x are x are x and x are and x are and x are Example 4 Expand and simplify (x-5)(2x+3) $$(x-5)(2x+3) = x(2x+3) - 5(2x+3) = 2x^2 + 3x - 10x - 15 = 2x^2 - 7x - 15$$ 1 Expand the brackets by multiplying $(2x+3)$ by x and 1 Expand. 2 a $$3(2x-1)$$ $$c = -(3xy - 2y^2)$$ **b** $$-2(5pq + 4q^2)$$ a $$7(3x+5)+6(2x-8)$$ $$9(3s+1)-5(6s-10)$$ **b** $$8(5p-2)-3(4p+9)$$ **d** $$2(4x-3)-(3x+5)$$ 3 Expand. **a** $$3x(4x + 8)$$ $$e^{-2h(6h^2+11h-5)}$$ **b** $$4k(5k^2-12)$$ d $$-3s(4s^2-7s+2)$$ 4 Expand and simplify. a $$3(y^2-8)-4(y^2-5)$$ b $$2x(x+5) + 3x(x-7)$$ c $$4p(2p-1)-3p(5p-2)$$ **d** $$3b(4b-3)-b(6b-9)$$ 5 Expand $$\frac{1}{2}(2y - 8)$$ **6** Expand and simplify. a $$13 - 2(m + 7)$$ **b** $$5p(p^2+6p)-9p(2p-3)$$ 7 The diagram shows a rectangle. Write down an expression, in terms of x, for the area of the rectangle. Show that the area of the rectangle can be written as $21x^2 - 35x$ Watch out! When multiplying (or dividing) positive and negative numbers, if the signs are the same signs are different the answer is '-'. the answer is '+'; if the 7x 8 Expand and simplify. a $$(x+4)(x+5)$$ **b** $$(x+7)(x+3)$$ c $$(x+7)(x-2)$$ d $$(x+5)(x-5)$$ e $$(2x+3)(x-1)$$ f $$(3x-2)(2x+1)$$ g $$(5x-3)(2x-5)$$ h $$(3x-2)(7+4x)$$ i $$(3x + 4y)(5y +
6x)$$ $$(x+5)^2$$ $$k (2x-7)^2$$ 1 $$(4x-3y)^2$$ ### Extend 9 Expand and simplify $(x + 3)^2 + (x - 4)^2$ 10 Expand and simplify. $$\mathbf{a} \qquad \left(x + \frac{1}{x}\right)\left(x - \frac{2}{x}\right)$$ **b** $$\left(x+\frac{1}{x}\right)^2$$ 11 Expand and simplify. a $$(x+4)(x+2)(x+1)$$ c $$(x+7)(x-2)(x-9)$$ e $$(2x+3)(x-1)(x-2)$$ $$g (x-3)^3$$ b $$(x+7)(x+1)(x-2)$$ **d** $$(x-5)(x-4)(x-2)$$ $$\mathbf{f} = (3x-2)(2x+1)(3x-2)$$ h $$(x-3)^4$$ ### Surds and rationalising the denominator ### A LEVEL LINKS Scheme of work: 1a. Algebraic expressions – basic algebraic manipulation, indices and surds ### **Key points** - A surd is the square root of a number that is not a square number, for example $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$, etc. - Surds can be used to give the exact value for an answer. - $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$ - To rationalise the denominator means to remove the surd from the denominator of a fraction. - To rationalise $\frac{a}{\sqrt{b}}$ you multiply the numerator and denominator by the surd \sqrt{b} - To rationalise $\frac{a}{b+\sqrt{c}}$ you multiply the numerator and denominator by $b-\sqrt{c}$ ### **Examples** ### Example 1 Simplify $\sqrt{50}$ | $\sqrt{50} = \sqrt{25 \times 2}$ | 1 Choose two numbers that are factors of 50. One of the factors must be a square number | |---|---| | $= \sqrt{25} \times \sqrt{2}$ $= 5 \times \sqrt{2}$ | 2 Use the rule $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$
3 Use $\sqrt{25} = 5$ | | $=5\sqrt{2}$ | | ### **Example 2** Simplify $\sqrt{147} - 2\sqrt{12}$ | $\sqrt{147} - 2\sqrt{12}$ $= \sqrt{49 \times 3} - 2\sqrt{4 \times 3}$ | 1 Simplify $\sqrt{147}$ and $2\sqrt{12}$. Choose two numbers that are factors of 147 and two numbers that are factors of 12. One of each pair of factors must be a square number | |---|---| | $=\sqrt{49}\times\sqrt{3}-2\sqrt{4}\times\sqrt{3}$ | 2 Use the rule $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$ | | $=7\times\sqrt{3}-2\times2\times\sqrt{3}$ | 3 Use $\sqrt{49} = 7$ and $\sqrt{4} = 2$ | | $=7\sqrt{3}-4\sqrt{3}$ $=3\sqrt{3}$ | 4 Collect like terms | **Example 3** Simplify $(\sqrt{7} + \sqrt{2})(\sqrt{7} - \sqrt{2})$ $$(\sqrt{7} + \sqrt{2})(\sqrt{7} - \sqrt{2})$$ $$= \sqrt{49} - \sqrt{7}\sqrt{2} + \sqrt{2}\sqrt{7} - \sqrt{4}$$ $$= 7 - 2$$ $$= 5$$ - 1 Expand the brackets. A common mistake here is to write $(\sqrt{7})^2 = 49$ - 2 Collect like terms: $-\sqrt{7}\sqrt{2} + \sqrt{2}\sqrt{7}$ $= -\sqrt{7}\sqrt{2} + \sqrt{7}\sqrt{2} = 0$ Example 4 Rationalise $\frac{1}{\sqrt{3}}$ $$\frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$$ $$= \frac{1 \times \sqrt{3}}{\sqrt{9}}$$ $$= \frac{\sqrt{3}}{3}$$ - 1 Multiply the numerator and denominator by $\sqrt{3}$ - 2 Use $\sqrt{9} = 3$ Example 5 Rationalise and simplify $\frac{\sqrt{2}}{\sqrt{12}}$ $$\frac{\sqrt{2}}{\sqrt{12}} = \frac{\sqrt{2}}{\sqrt{12}} \times \frac{\sqrt{12}}{\sqrt{12}}$$ $$= \frac{\sqrt{2} \times \sqrt{4 \times 3}}{12}$$ $$= \frac{2\sqrt{2}\sqrt{3}}{12}$$ $$= \frac{\sqrt{2}\sqrt{3}}{6}$$ - 1 Multiply the numerator and denominator by $\sqrt{12}$ - 2 Simplify $\sqrt{12}$ in the numerator. Choose two numbers that are factors of 12. One of the factors must be a square number - 3 Use the rule $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$ - 4 Use $\sqrt{4} = 2$ - 5 Simplify the fraction: $\frac{2}{2}$ simplifies to $\frac{1}{2}$ **Example 6** Rationalise and simplify $\frac{3}{2+\sqrt{5}}$ $$\frac{3}{2+\sqrt{5}} = \frac{3}{2+\sqrt{5}} \times \frac{2-\sqrt{5}}{2-\sqrt{5}}$$ $$=\frac{3\left(2-\sqrt{5}\right)}{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}$$ $$=\frac{6-3\sqrt{5}}{4+2\sqrt{5}-2\sqrt{5}-5}$$ $$=\frac{6-3\sqrt{5}}{-1}$$ $$=3\sqrt{5}-6$$ - 1 Multiply the numerator and denominator by $2-\sqrt{5}$ - 2 Expand the brackets - 3 Simplify the fraction - 4 Divide the numerator by −1 Remember to change the sign of all terms when dividing by −1 - 1 Simplify. - a $\sqrt{45}$ - c $\sqrt{48}$ - e $\sqrt{300}$ - $\mathbf{g} = \sqrt{72}$ - b $\sqrt{125}$ - d $\sqrt{175}$ - $f \sqrt{28}$ - h $\sqrt{162}$ #### Hint One of the two numbers you choose at the start must be a square number. - 2 Simplify. - a $\sqrt{72} + \sqrt{162}$ - c $\sqrt{50} \sqrt{8}$ - e $2\sqrt{28} + \sqrt{28}$ - **b** $\sqrt{45} 2\sqrt{5}$ - d $\sqrt{75} \sqrt{48}$ - f $2\sqrt{12} \sqrt{12} + \sqrt{27}$ ### Watch out! Check you have chosen the highest square number at the start. - 3 Expand and simplify. - a $(\sqrt{2} + \sqrt{3})(\sqrt{2} \sqrt{3})$ - b $(3+\sqrt{3})(5-\sqrt{12})$ - c $(4-\sqrt{5})(\sqrt{45}+2)$ - d $(5+\sqrt{2})(6-\sqrt{8})$ 4 Rationalise and simplify, if possible. a $$\frac{1}{\sqrt{5}}$$ b $$\frac{1}{\sqrt{11}}$$ $$c = \frac{2}{\sqrt{7}}$$ d $$\frac{2}{\sqrt{8}}$$ $$e \frac{2}{\sqrt{2}}$$ $$f = \frac{5}{\sqrt{5}}$$ $$g = \frac{\sqrt{8}}{\sqrt{24}}$$ $$\mathbf{h} \qquad \frac{\sqrt{5}}{\sqrt{45}}$$ 5 Rationalise and simplify. $$a = \frac{1}{3-\sqrt{5}}$$ $$\mathbf{b} = \frac{2}{4 + \sqrt{3}}$$ $$c = \frac{6}{5 - \sqrt{2}}$$ ### Extend 6 Expand and simplify $$(\sqrt{x} + \sqrt{y})(\sqrt{x} - \sqrt{y})$$ 7 Rationalise and simplify, if possible. $$\mathbf{a} = \frac{1}{\sqrt{9} - \sqrt{8}}$$ $$\mathbf{b} = \frac{1}{\sqrt{x} - \sqrt{y}}$$ ### **Rules of indices** ### A LEVEL LINKS Scheme of work: 1a. Algebraic expressions - basic algebraic manipulation, indices and surds ### **Key points** - $\bullet \quad a^m \times a^n = a^{m+n}$ - $\bullet \quad \frac{a^m}{a^n} = a^{m-n}$ - $a^0 = 1$ - $a^{\frac{1}{n}} = \sqrt[n]{a}$ i.e. the *n*th root of *a* - $\bullet \qquad a^{\frac{m}{n}} = \sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m$ - $\bullet \quad a^{-m} = \frac{1}{a^m}$ - The square root of a number produces two solutions, e.g. $\sqrt{16} = \pm 4$. ### **Examples** Example 1 Evaluate 10⁰ | $10^0 = 1$ | Any value raised to the power of zero is equal to 1 | |------------|---| | | | Example 2 Evaluate $9^{\frac{1}{2}}$ | | 1 | |------------------------------|-------------------------------------| | $9^{\frac{7}{2}} = \sqrt{9}$ | Use the rule $a^{-n} = \sqrt[n]{a}$ | |) - V | OSC MIC 10XC W | | =3 | | Example 3 Evaluate $27^{\frac{2}{3}}$ $$27^{\frac{2}{3}} = (\sqrt[3]{27})^{2}$$ $$= 3^{2}$$ $$= 9$$ 1 Use the rule $a^{\frac{m}{n}} = (\sqrt[n]{a})^{m}$ 2 Use $\sqrt[3]{27} = 3$ Example 4 Evaluate 4⁻² | $4^{-2} = \frac{1}{4^2}$ | 1 Use the rule $a^{-m} = \frac{1}{a^m}$ | |--------------------------|---| | $=\frac{1}{16}$ | 2 Use $4^2 = 16$ | Example 5 Simplify $\frac{6x^5}{2x^2}$ $$\frac{6x^5}{2x^2} = 3x^3$$ $$6 \div 2 = 3 \text{ and use the rule } \frac{a^m}{a^n} = a^{m-n} \text{ to}$$ $$\text{give } \frac{x^5}{x^2} = x^{5-2} = x^3$$ Example 6 Simplify $\frac{x^3 \times x^5}{x^4}$ $$\frac{x^{3} \times x^{5}}{x^{4}} = \frac{x^{3+5}}{x^{4}} = \frac{x^{8}}{x^{4}}$$ $$= x^{8-4} = x^{4}$$ 1 Use the rule $a^{m} \times a^{n} = a^{m+n}$ 2 Use the rule $\frac{a^{m}}{a^{n}} = a^{m-n}$ Example 7 Write $\frac{1}{3x}$ as a single power of x | $\frac{1}{3x} = \frac{1}{3}x^{-1}$ | Use the rule $\frac{1}{a^m} = a^{-m}$, note that the | | |------------------------------------|---|--| | | fraction $\frac{1}{3}$ remains unchanged | | Example 8 Write $\frac{4}{\sqrt{x}}$ as a single power of x | $\frac{4}{\sqrt{x}} = \frac{4}{x^{\frac{1}{2}}}$ | 1 Use the rule $a^{\frac{1}{n}} = \sqrt[n]{a}$ | |--|--| | $=4x^{-\frac{1}{2}}$ | 2 Use the rule $\frac{1}{a^m} = a^{-m}$ | - 1 Evaluate. - **a** 14⁰ - **b** 3^{0} - e 5º - \mathbf{d} x^0 - 2 Evaluate. - a $49^{\frac{1}{2}}$ - **b** $64^{\frac{1}{3}}$ - c $125^{\frac{1}{3}}$ - **d** $16^{\frac{1}{4}}$ - 3 Evaluate. - a $25^{\frac{3}{2}}$ - **b** $8^{\frac{5}{3}}$ - c $49^{\frac{3}{2}}$ - **d** $16^{\frac{3}{4}}$ - 4 Evaluate. - a 5^{-2} - **b** 4⁻³ - c 2⁻⁵ - **d** 6⁻² - 5 Simplify. - $\mathbf{a} \qquad \frac{3x^2 \times x^3}{2x^2}$ - $\mathbf{b} \qquad \frac{10x^5}{2x^2 \times x}$ - $\mathbf{c} \qquad \frac{3x \times 2x^3}{2x^3}$ - $\mathbf{d} \qquad \frac{7x^3y^2}{14x^5y}$ - $\mathbf{e} \qquad \frac{y^2}{y^{\frac{1}{2}} \times y}$ - $\mathbf{f} \qquad \frac{c^{\frac{1}{2}}}{c^2 \times c^{\frac{3}{2}}}$ - $\mathbf{g} = \frac{\left(2x^2\right)^3}{4x^0}$ - $h \qquad \frac{x^{\frac{1}{2}} \times x^{\frac{3}{2}}}{x^{-2} \times x^3}$ ### Watch out! Remember that any value raised to the power of zero is 1. This is the rule $a^0 = 1$. - 6 Evaluate. - $a 4^{-\frac{1}{2}}$ - b $27^{-\frac{2}{3}}$ - $\mathbf{c} \qquad 9^{-\frac{1}{2}} \times 2^3$ - **d** $16^{\frac{1}{4}} \times 2^{-3}$ - $\mathbf{e} \qquad \left(\frac{9}{16}\right)^{-\frac{1}{2}}$ - $\mathbf{f} \qquad \left(\frac{27}{64}\right)^{-\frac{2}{3}}$ - 7 Write the following as a single power of x. - $\mathbf{a} = \frac{1}{x}$ - $\mathbf{b} \qquad \frac{1}{x^7}$ - c $\sqrt[4]{x}$ - $\mathbf{d} \qquad \sqrt[5]{x^2}$ - $e \frac{1}{\sqrt[3]{x}}$ - f <u>3/</u> Write the following without negative or fractional powers. $$\mathbf{a} \quad x^{-3}$$ $$d = \frac{2}{r^5}$$ $$f x^{-\frac{3}{4}}$$ Write the following in the form ax^n . a $$5\sqrt{x}$$ b $$\frac{2}{x^3}$$ $$c \frac{1}{3x^2}$$ d $$\frac{2}{\sqrt{x}}$$ $$e \frac{4}{\sqrt[3]{x}}$$ ### **Extend** 10 Write as sums of powers of x. $$\mathbf{a} \qquad \frac{x^5 + 1}{x^2}$$ **b** $$x^2 \left(x + \frac{1}{x} \right)$$ **b** $$x^2 \left(x + \frac{1}{x} \right)$$ **c** $x^{-4} \left(x^2 + \frac{1}{x^3} \right)$ ### **Factorising expressions** ### A LEVEL LINKS Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants
Key points - Factorising an expression is the opposite of expanding the brackets. - A quadratic expression is in the form $ax^2 + bx + c$, where $a \neq 0$. - To factorise a quadratic equation find two numbers whose sum is b and whose product is ac. - An expression in the form $x^2 y^2$ is called the difference of two squares. It factorises to (x y)(x + y). ### **Examples** ### **Example 1** Factorise $15x^2y^3 + 9x^4y$ | The highest common factor is $3x^2y$.
So take $3x^2y$ outside the brackets and then divide each term by $3x^2y$ to find the terms in the brackets | |---| | | ### Example 2 Factorise $4x^2 - 25y^2$ |--| ### Example 3 Factorise $x^2 + 3x - 10$ | b = 3, $ac = -10$ | 1 Work out the two factors of $ac = -10$ which add to give $b = 3$ | |---|--| | G 2 10 2 5 0 10 | (5 and -2) | | So $x^2 + 3x - 10 = x^2 + 5x - 2x - 10$ | 2 Rewrite the <i>b</i> term (3 <i>x</i>) using these two factors | | = x(x+5) - 2(x+5) | 3 Factorise the first two terms and the last two terms | | =(x+5)(x-2) | 4 $(x + 5)$ is a factor of both terms | **Example 4** Factorise $6x^2 - 11x - 10$ $$b = -11, ac = -60$$ So $$6x^{2} - 11x - 10 = 6x^{2} - 15x + 4x - 10$$ $$= 3x(2x - 5) + 2(2x - 5)$$ $$= (2x - 5)(3x + 2)$$ - Work out the two factors of ac = -60 which add to give b = -11 (-15 and 4) - 2 Rewrite the b term (-11x) using these two factors - 3 Factorise the first two terms and the last two terms - 4 (2x-5) is a factor of both terms Example 5 Simplify $\frac{x^2 - 4x - 21}{2x^2 + 9x + 9}$ $$\frac{x^2 - 4x - 21}{2x^2 + 9x + 9}$$ For the numerator: b = -4, ac = -21 So $$x^2 - 4x - 21 = x^2 - 7x + 3x - 21$$ $= x(x - 7) + 3(x - 7)$ $= (x - 7)(x + 3)$ For the denominator: b = 9, ac = 18 So $$2x^2 + 9x + 9 = 2x^2 + 6x + 3x + 9$$ $= 2x(x+3) + 3(x+3)$ $= (x+3)(2x+3)$ So $\frac{x^2 - 4x - 21}{x^2 - 4x - 21} = \frac{(x-7)(x+3)}{x^2 - 4x - 21}$ $$\frac{x^2 - 4x - 21}{2x^2 + 9x + 9} = \frac{(x - 7)(x + 3)}{(x + 3)(2x + 3)}$$ $$= \frac{x - 7}{2x + 3}$$ - 1 Factorise the numerator and the denominator - 2 Work out the two factors of ac = -21 which add to give b = -4 (-7 and 3) - 3 Rewrite the b term (-4x) using these two factors - 4 Factorise the first two terms and the last two terms - 5 (x-7) is a factor of both terms - 6 Work out the two factors of ac = 18 which add to give b = 9 (6 and 3) - 7 Rewrite the b term (9x) using these two factors - **8** Factorise the first two terms and the last two terms - 9 (x+3) is a factor of both terms - 10 (x + 3) is a factor of both the numerator and denominator so cancels out as a value divided by itself is 1 Factorise. a $$6x^4y^3 - 10x^3y^4$$ $c = 25x^2y^2 - 10x^3y^2 + 15x^2y^3$ **b** $$21a^3b^5 + 35a^5b^2$$ Hint Take the highest common factor outside the bracket. **b** $$21a^3b^5 + 35$$ Factorise a $$x^2 + 7x + 12$$ e $$x^2 - 11x + 30$$ e $$x^2 - 7x - 18$$ $$\sigma = x^2 - 3x - 40$$ $$\mathbf{g} = x^2 - 3x - 40$$ b $x^2 + 5x - 14$ d $x^2 - 5x - 24$ $$f x^2 + x - 20$$ h $$x^2 + 3x - 28$$ Factorise a $$36x^2 - 49y^2$$ c $$18a^2 - 200b^2c^2$$ **b** $$4x^2 - 81y^2$$ Factorise a $$2x^2 + x - 3$$ c $$2x^2 + 7x + 3$$ e $$10x^2 + 21x + 9$$ **b** $$6x^2 + 17x + 5$$ **d** $$9x^2 - 15x + 4$$ f $$12x^2 - 38x + 20$$ Simplify the algebraic fractions. a $$\frac{2x^2 + 4x}{x^2 - x}$$ $$\frac{x^2 - 2x - 8}{x^2 - 4x}$$ e $$\frac{x^2 - 4x}{x^2 - 4x}$$ $$\mathbf{b} \qquad \frac{x^2 + 3x}{x^2 + 2x - 3}$$ d $$\frac{x^2 - 5x}{x^2 - 25}$$ $$f = \frac{2x^2 + 14x}{2x^2 + 4x - 70}$$ Simplify $$\mathbf{a} = \frac{9x^2 - 16}{3x^2 + 17x - 28}$$ $$c \qquad \frac{4 - 25x^2}{10x^2 - 11x - 6}$$ $$\mathbf{b} \qquad \frac{2x^2 - 7x - 15}{3x^2 - 17x + 10}$$ $$d = \frac{6x^2 - x - 1}{2x^2 + 7x - 4}$$ ### Extend 7 Simplify $\sqrt{x^2 + 10x + 25}$ 8 Simplify $$\frac{(x+2)^2 + 3(x+2)^2}{x^2 - 4}$$ ### Completing the square #### A LEVEL LINKS Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants ### **Key points** - Completing the square for a quadratic rearranges $ax^2 + bx + c$ into the form $p(x+q)^2 + r$ - If $a \neq 1$, then factorise using a as a common factor. ### Examples **Example 1** Complete the square for the quadratic expression $x^2 + 6x - 2$ $$x^{2} + 6x - 2$$ $$= (x + 3)^{2} - 9 - 2$$ $$= (x + 3)^{2} - 11$$ 1 Write $x^{2} + bx + c$ in the form $$\left(x + \frac{b}{2}\right)^{2} - \left(\frac{b}{2}\right)^{2} + c$$ 2 Simplify **Example 2** Write $2x^2 - 5x + 1$ in the form $p(x+q)^2 + r$ | $2x^2 - 5x + 1$ | 1 Before completing the square write $ax^2 + bx + c$ in the form | |--|--| | $=2\left(x^2-\frac{5}{2}x\right)+1$ | $a\left(x^{2} + \frac{b}{a}x\right) + c$ 2 Now complete the square by writing $x^{2} - \frac{5}{2}x \text{ in the form}$ | | $=2\left[\left(x-\frac{5}{4}\right)^2-\left(\frac{5}{4}\right)^2\right]+1$ | $\left(x+\frac{b}{2}\right)^2-\left(\frac{b}{2}\right)^2$ | | $= 2\left(x - \frac{5}{4}\right)^2 - \frac{25}{8} + 1$ | 3 Expand the square brackets – don't forget to multiply $\left(\frac{5}{4}\right)^2$ by the | | $= 2\left(x - \frac{5}{4}\right)^2 - \frac{17}{8}$ | factor of 2 4 Simplify | 1 Write the following quadratic expressions in the form $(x+p)^2 + q$ a $$x^2 + 4x + 3$$ **b** $$x^2 - 10x - 3$$ c $$x^2 - 8x$$ **d** $$x^2 + 6x$$ e $$x^2 - 2x + 7$$ $$f x^2 + 3x - 2$$ Write the following quadratic expressions in the form $p(x+q)^2 + r$ a $$2x^2 - 8x - 16$$ **b** $$4x^2 - 8x - 16$$ c $$3x^2 + 12x - 9$$ d $$2x^2 + 6x - 8$$ 3 Complete the square. a $$2x^2 + 3x + 6$$ **b** $$3x^2 - 2x$$ c $$5x^2 + 3x$$ **d** $$3x^2 + 5x + 3$$ ### Extend 4 Write $(25x^2 + 30x + 12)$ in the form $(ax + b)^2 + c$. # Solving quadratic equations by factorisation ### A LEVEL LINKS Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants ### **Key points** - A quadratic equation is an equation in the form $ax^2 + bx + c = 0$ where $a \ne 0$. - To factorise a quadratic equation find two numbers whose sum is b and whose products is ac. - When the product of two numbers is 0, then at least one of the numbers must be 0. - If a quadratic can be solved it will have two solutions (these may be equal). ### Examples ### Example 1 Solve $5x^2 = 15x$ | $5x^2 = 15x$ | 1 Rearrange the equation so that all of | |------------------------------|--| | $5x^2 - 15x = 0$ | the terms are on one side of the equation and it is equal to zero. Do not divide both sides by x as this would lose the solution $x = 0$. | | 5x(x-3) = 0 | 2 Factorise the quadratic equation. 5x is a common factor. | | So $5x = 0$ or $(x - 3) = 0$ | 3 When two values multiply to make zero, at least one of the values must | | Therefore $x = 0$ or $x = 3$ | be zero. 4 Solve these two equations. | ### **Example 2** Solve $x^2 + 7x + 12 = 0$ | $x^{2} + 7x + 12 = 0$ $b = 7, ac = 12$ | 1 Factorise the quadratic equation.
Work out the two factors of $ac = 12$
which add to give you $b = 7$.
(4 and 3) | |--|--| | $x^2 + 4x + 3x + 12 = 0$ | 2 Rewrite the b term (7x) using these two factors. | | x(x+4) + 3(x+4) = 0 | 3 Factorise the first two terms and the last two terms. | | (x+4)(x+3) = 0 | 4 $(x+4)$ is a factor of both terms. | | So $(x+4) = 0$ or $(x+3) = 0$ | 5 When two values multiply to make zero, at least one of the values must be zero. | | Therefore $x = -4$ or $x = -3$ | 6 Solve these two equations. | **Example 3** Solve $9x^2 - 16 = 0$ $$9x^2 - 16 = 0$$ $$(3x + 4)(3x - 4) = 0$$ So $$(3x+4) = 0$$ or $(3x-4) = 0$ $$x = -\frac{4}{3}$$ or $x = \frac{4}{3}$ 1 Factorise the quadratic equation. This is the difference of two squares as the two terms are $(3x)^2$ and $(4)^2$. 2 When two values multiply to make zero, at least one of the values must be zero. 3 Solve these two equations. **Example 4** Solve $2x^2 - 5x - 12 = 0$ $$b = -5$$, $ac = -24$ So $$2x^2 - 8x + 3x - 12 = 0$$ $$2x(x-4) + 3(x-4) = 0$$ $$(x-4)(2x+3) = 0$$ So $(x-4) = 0$ or $(2x+3) = 0$ $$x = 4$$ or $x = -\frac{3}{2}$ 1 Factorise the quadratic equation. Work out the two factors of ac = -24 which add to give you b = -5. (-8 and 3) 2 Rewrite the b term (-5x) using these two factors. 3 Factorise the first two terms and the last two terms. 4 (x-4) is a factor of both terms. 5 When two values multiply to make zero, at least one of the values must be zero. 6 Solve these two equations. **Practice** 1 Solve a $$6x^2 + 4x = 0$$ **b** $$28x^2 - 21x = 0$$ $$x^2 + 7x + 10 = 0$$ **d** $$x^2 - 5x + 6 = 0$$ $$e x^2 - 3x - 4 = 0$$ $$f x^2 + 3x - 10 = 0$$ $$\mathbf{g} \qquad x^2 - 10x + 24 = 0$$ **h** $$x^2 - 36 = 0$$ $$x^2 + 3x - 28 = 0$$ $$y^2 - 6x + 9 = 0$$ $$\mathbf{k} = 2x^2 - 7x - 4 = 0$$ $$1 \quad 3x^2 - 13x - 10 = 0$$ 2 Solve $$x^2 - 3x = 10$$ **b** $$x^2 - 3 = 2x$$ $$x^2 + 5x = 24$$ d $$x^2 - 42 = x$$ e $$x(x+2) = 2x + 25$$ $$f x^2 - 30 = 3x - 2$$ $$g x(3x+1) = x^2 + 15$$ h $$3x(x-1) = 2(x+1)$$ Hint Get all terms onto one side of the equation. # Solving quadratic equations by completing the square ### A LEVEL LINKS Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants ### Key points • Completing the square lets you write a quadratic equation in the form $p(x+q)^2 + r = 0$. ### **Examples** **Example 5** Solve $x^2 + 6x + 4 = 0$. Give your solutions in surd form. $$x^{2} + 6x + 4 = 0$$ $$(x + 3)^{2} - 9 + 4 = 0$$ $$(x + 3)^{2} - 5 = 0$$ $$(x + 3)^{2} = 5$$
$$x + 3 = \pm\sqrt{5}$$ 2 3 4 $$x = \pm \sqrt{5} - 3$$ So $$x = -\sqrt{5} - 3$$ or $x = \sqrt{5} - 3$ 1 Write $$x^2 + bx + c = 0$$ in the form $$\left(x + \frac{b}{2}\right)^2 - \left(\frac{b}{2}\right)^2 + c = 0$$ - 2 Simplify. - 3 Rearrange the equation to work out x. First, add 5 to both sides. - 4 Square root both sides. Remember that the square root of a value gives two answers. - 5 Subtract 3 from both sides to solve the equation. - 6 Write down both solutions. Example 6 Solve $2x^2 - 7x + 4 = 0$. Give your solutions in surd form. $$2x^2 - 7x + 4 = 0$$ $$2\left(x^2 - \frac{7}{2}x\right) + 4 = 0$$ $$2\left[\left(x - \frac{7}{4}\right)^2 - \left(\frac{7}{4}\right)^2\right] + 4 = 0$$ $$2\left(x - \frac{7}{4}\right)^2 - \frac{49}{8} + 4 = 0$$ $$2\left(x - \frac{7}{4}\right)^2 - \frac{17}{8} = 0$$ 1 Before completing the square write $ax^2 + bx + c$ in the form $$a\left(x^2 + \frac{b}{a}x\right) + c$$ 2 Now complete the square by writing $$x^2 - \frac{7}{2}x$$ in the form $$\left(x + \frac{b}{2a}\right)^2 - \left(\frac{b}{2a}\right)^2$$ - 3 Expand the square brackets. - 4 Simplify. (continued on next page) 5 Rearrange the equation to work out $$2\left(x - \frac{7}{4}\right)^2 = \frac{17}{8}$$ $$\left(x - \frac{7}{4}\right)^2 = \frac{17}{16}$$ $$x - \frac{7}{4} = \pm \frac{\sqrt{17}}{4}$$ $$x = \pm \frac{\sqrt{17}}{4} + \frac{7}{4}$$ So $$x = \frac{7}{4} - \frac{\sqrt{17}}{4}$$ or $x = \frac{7}{4} + \frac{\sqrt{17}}{4}$ - x. First, add $\frac{17}{8}$ to both sides. - 6 Divide both sides by 2. - 7 Square root both sides. Remember that the square root of a value gives two answers. - 8 Add $\frac{7}{4}$ to both sides. - 9 Write down both the solutions. 1 Solve by completing the square. $$x^2 - 4x - 3 = 0$$ $$x^2 + 8x - 5 = 0$$ $$e 2x^2 + 8x - 5 = 0$$ $$\mathbf{b} \qquad x^2 - 10x + 4 = 0$$ **d** $$x^2 - 2x - 6 = 0$$ $$\mathbf{f} \qquad 5x^2 + 3x - 4 = 0$$ 2 Solve by completing the square. a $$(x-4)(x+2) = 5$$ **b** $$2x^2 + 6x - 7 = 0$$ $$x^2 - 5x + 3 = 0$$ ### Hint Get all terms onto one side of the equation. ## Solving quadratic equations by using the formula #### A LEVEL LINKS Scheme of work: 1b. Quadratic functions - factorising, solving, graphs and the discriminants ### Key points - Any quadratic equation of the form $ax^2 + bx + c = 0$ can be solved using the formula $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$ - If $b^2 4ac$ is negative then the quadratic equation does not have any real solutions. - It is useful to write down the formula before substituting the values for a, b and c. ### Examples Example 7 Solve $x^2 + 6x + 4 = 0$. Give your solutions in surd form. $$a = 1, b = 6, c = 4$$ $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ $$x = \frac{-6 \pm \sqrt{6^2 - 4(1)(4)}}{2(1)}$$ $$x = \frac{-6 \pm \sqrt{20}}{2}$$ $$x = \frac{-6 \pm 2\sqrt{5}}{2}$$ $$x = -3 \pm \sqrt{5}$$ So $x = -3 - \sqrt{5}$ or $x = \sqrt{5} - 3$ - Identify a, b and c and write down the formula. Remember that -b±√b²-4ac is all over 2a, not just part of it. - 2 Substitute a = 1, b = 6, c = 4 into the formula. - 3 Simplify. The denominator is 2, but this is only because a = 1. The denominator will not always be 2. - 4 Simplify $\sqrt{20}$. $\sqrt{20} = \sqrt{4 \times 5} = \sqrt{4} \times \sqrt{5} = 2\sqrt{5}$ - 5 Simplify by dividing numerator and denominator by 2. - 6 Write down both the solutions. Solve $3x^2 - 7x - 2 = 0$. Give your solutions in surd form. Example 8 $$a = 3, b = -7, c = -2$$ $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ $$x = \frac{-(-7) \pm \sqrt{(-7)^2 - 4(3)(-2)}}{2(3)}$$ $$x = \frac{7 \pm \sqrt{73}}{6}$$ So $x = \frac{7 - \sqrt{73}}{6}$ or $x = \frac{7 + \sqrt{73}}{6}$ $$x = \frac{7 \pm \sqrt{73}}{6}$$ So $$x = \frac{7 - \sqrt{73}}{6}$$ or $x = \frac{7 + \sqrt{73}}{6}$ 1 Identify a, b and c, making sure you get the signs right and write down the formula. Remember that $-b \pm \sqrt{b^2 - 4ac}$ is all over 2a, not just part of it. - 2 Substitute a = 3, b = -7, c = -2 into the formula. - Simplify. The denominator is 6 when a = 3. A common mistake is to always write a denominator of 2. - 4 Write down both the solutions. Practice Solve, giving your solutions in surd form. $$a 3x^2 + 6x + 2 = 0$$ **b** $$2x^2 - 4x - 7 = 0$$ Solve the equation $x^2 - 7x + 2 = 0$ 2 Give your solutions in the form $\frac{a \pm \sqrt{b}}{c}$, where a, b and c are integers. Solve $10x^2 + 3x + 3 = 5$ 3 Give your solution in surd form. Hint Get all terms onto one side of the equation. Extend Choose an appropriate method to solve each quadratic equation, giving your answer in surd form when necessary. a $$4x(x-1) = 3x-2$$ **b** $$10 = (x+1)^2$$ $$c x(3x-1) = 10$$ ### Sketching quadratic graphs #### A LEVEL LINKS Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants ### **Key points** - The graph of the quadratic function $y = ax^2 + bx + c$, where $a \ne 0$, is a curve called a parabola. - Parabolas have a line of symmetry and a shape as shown. - To sketch the graph of a function, find the points where the graph intersects the axes. - To find where the curve intersects the y-axis substitute x = 0 into the function. - To find where the curve intersects the x-axis substitute y = 0 into the function. - At the turning points of a graph the gradient of the curve is 0 and any tangents to the curve at these points are horizontal. - To find the coordinates of the maximum or minimum point (turning points) of a quadratic curve (parabola) you can use the completed square form of the function. ### Examples **Example 1** Sketch the graph of $y = x^2$. The graph of $y = x^2$ is a parabola. When x = 0, y = 0. a = 1 which is greater than zero, so the graph has the shape: **Example 2** Sketch the graph of $y = x^2 - x - 6$. When x = 0, $y = 0^2 - 0 - 6 = -6$ So the graph intersects the y-axis at (0, -6) When $$y = 0$$, $x^2 - x - 6 = 0$ $$(x+2)(x-3)=0$$ $$x = -2 \text{ or } x = 3$$ So. the graph intersects the x-axis at (-2, 0) and (3, 0) $$x^2 - x - 6 = \left(x - \frac{1}{2}\right)^2 - \frac{1}{4} - 6$$ - 1 Find where the graph intersects the y-axis by substituting x = 0. - 2 Find where the graph intersects the x-axis by substituting y = 0. - 3 Solve the equation by factorising. - 4 Solve (x + 2) = 0 and (x 3) = 0. - 5 a = 1 which is greater than zero, so the graph has the shape: (continued on next page) 6 To find the turning point, complete the square. $$=\left(x-\frac{1}{2}\right)^2-\frac{25}{4}$$ When $$\left(x - \frac{1}{2}\right)^2 = 0$$, $x = \frac{1}{2}$ and $y = -\frac{25}{4}$, so the turning point is at the point $$\left(\frac{1}{2}, -\frac{25}{4}\right)$$ The turning point is the minimum value for this expression and occurs when the term in the bracket is equal to zero. ### **Practice** Sketch the graph of $y = -x^2$. Sketch each graph, labelling where the curve crosses the axes. **a** $$y = (x+2)(x-1)$$ $$y = x(x - 3)$$ **a** $$y = (x+2)(x-1)$$ **b** $y = x(x-3)$ **c** $y = (x+1)(x+5)$ Sketch each graph, labelling where the curve crosses the axes. $$\mathbf{a} \qquad y = x^2 - x - 6$$ $$y = x^2 - 5x + 4$$ $$y = x^2 - 4$$ $$\mathbf{d} \qquad y = x^2 + 4x$$ **e** $$y = 9 - x^2$$ **a** $$y = x^2 - x - 6$$ **b** $y = x^2 - 5x + 4$ **c** $y = x^2 - 4$ **d** $y = x^2 + 4x$ **e** $y = 9 - x^2$ **f** $y = x^2 + 2x - 3$ Sketch the graph of $y = 2x^2 + 5x - 3$, labelling where the curve crosses the axes. ### Extend Sketch each graph. Label where the curve crosses the axes and write down the coordinates of the turning point. a $$y = x^2 - 5x + 6$$ **a** $$y = x^2 - 5x + 6$$ **b** $y = -x^2 + 7x - 12$ **c** $y = -x^2 + 4x$ $$\mathbf{c} \qquad y = -x^2 + 4x$$ Sketch the graph of $y = x^2 + 2x + 1$. Label where the curve crosses the axes and write down the equation of the line of symmetry. # Solving linear simultaneous equations using the elimination method ### A LEVEL LINKS Scheme of work: 1c. Equations - quadratic/linear simultaneous ### Key points - Two equations are simultaneous when they are both true at the same time. - Solving simultaneous linear equations in two unknowns involves finding the value of each unknown which works for both equations. - Make sure that the coefficient of one of the unknowns is the same in both equations. - Eliminate this equal unknown by either subtracting or adding the two equations. ### Examples ### **Example 1** Solve the simultaneous equations 3x + y = 5 and x + y = 1 | 3x + y = 5 $- x + y = 1$ $2x = 4$ So $x = 2$ | 1 Subtract the second equation from the first equation to eliminate the <i>y</i> term. | |---|--| | Using $x + y = 1$
2 + y = 1
So $y = -1$ | 2 To find the value of y, substitute $x = 2$ into one of the original equations. | | Check:
equation 1: $3 \times 2 + (-1) = 5$ YES
equation 2: $2 + (-1) = 1$ YES | 3 Substitute the values of x and y into both equations to check your answers. | ### **Example 2** Solve x + 2y = 13 and 5x - 2y = 5 simultaneously. | x + 2y = 13 $+ 5x - 2y = 5$ $6x = 18$ So $x = 3$ | 1 Add the two equations together to eliminate the <i>y</i> term. | |--|---| | Using $x + 2y = 13$
3 + 2y = 13
So $y = 5$ | To find the value of y , substitute $x = 3$ into one of the original equations. | | Check:
equation 1: $3 + 2 \times 5 = 13$ YES
equation 2: $5 \times 3 - 2 \times 5 = 5$ YES | 3 Substitute the values of x and y into both equations to check your answers. | **Example 3** Solve 2x + 3y = 2 and 5x + 4y = 12 simultaneously. $$(2x + 3y = 2) \times 4 \rightarrow 8x + 12y = 8$$ $(5x + 4y = 12) \times 3 \rightarrow 15x + 12y = 36$ $7x = 28$ So $$x = 4$$ Using $$2x + 3y = 2$$ $2 \times 4 + 3y = 2$ So $y = -2$ Check: equation 1: $2 \times 4 + 3 \times (-2) = 2$ YES equation 2: $5 \times 4 + 4
\times (-2) = 12$ YES - 1 Multiply the first equation by 4 and the second equation by 3 to make the coefficient of y the same for both equations. Then subtract the first equation from the second equation to eliminate the y term. - 2 To find the value of y, substitute x = 4 into one of the original equations. - 3 Substitute the values of x and y into both equations to check your answers. ### **Practice** Solve these simultaneous equations. $$\begin{aligned} 4x + y &= 8 \\ x + y &= 5 \end{aligned}$$ $$3x + y = 7$$ $$3x + 2y = 5$$ $$3 4x + y = 3$$ $$3x - y = 11$$ $$4 \qquad 3x + 4y = 7$$ $$x - 4v = 5$$ $$5 2x + y = 11$$ $$x - 3y = 9$$ $$6 2x + 3y = 11$$ $$3x + 2y = 4$$ # Solving linear simultaneous equations using the substitution method ### A LEVEL LINKS Scheme of work: 1c. Equations – quadratic/linear simultaneous **Textbook:** Pure Year 1, 3.1 Linear simultaneous equations ### Key points • The substitution method is the method most commonly used for A level. This is because it is the method used to solve linear and quadratic simultaneous equations. ### **Examples** ### **Example 4** Solve the simultaneous equations y = 2x + 1 and 5x + 3y = 14 5x + 3(2x + 1) = 14 1 Substitute second 5x + 6x + 3 = 14 2 Expand 11x + 3 = 14 3 Work of the second 11x + 3 = 14 3 Work of the second 11x + 3 = 14 3 Work of the second 11x + 3 = 14 3 Work of the second 11x + 3 = 14 3 Work of the second 11x + 3 = 14 4 To find x = 1 in equation 11x + 3 = 14 5 Substitute both expanded 11x + 3 = 14 5 Substitute both expansion 11x + 3 = 14 5 Substitute both expansion 11x + 3 = 14 5 Substitute both expansion 11x + 3 = 14 5 Substitute both expansion 11x + 3 = 14 5 Substitute both expansion 11x + 3 = 14 5 Substitute both expansion 11x + 3 = 14 5 Substitute both expansion 11x + 3 = 14 5 Substitute both expansion 11x + 3 = 14 5 Substitute both expansion 11x + 3 = 14 5 Substitute both expansion 11x + 3 = 14 5 Substitute both expansion 11x + 3 = 14 5 Substitute both expansion 11x + 3 = 14 5 Substitute both expansion 11x + 3 = 14 5 Substitu - 1 Substitute 2x + 1 for y into the second equation. - 2 Expand the brackets and simplify. - 3 Work out the value of x. - 4 To find the value of y, substitute x = 1 into one of the original equations. - 5 Substitute the values of x and y into both equations to check your answers. ### Example 5 Solve 2x - y = 16 and 4x + 3y = -3 simultaneously. $$y = 2x - 16$$ $$4x + 3(2x - 16) = -3$$ $$4x + 6x - 48 = -3$$ $$10x - 48 = -3$$ $$10x = 45$$ So $x = 4\frac{1}{2}$ Using $y = 2x - 16$ $$y = 2 \times 4\frac{1}{2} - 16$$ So $y = -7$ Check: equation 1: $2 \times 4\frac{1}{2} - (-7) = 16$ YES equation 2: $4 \times 4\frac{1}{2} + 3 \times (-7) = -3$ YES - 1 Rearrange the first equation. - 2 Substitute 2x 16 for y into the second equation. - 3 Expand the brackets and simplify. - 4 Work out the value of x. - 5 To find the value of y, substitute $x = 4\frac{1}{2}$ into one of the original equations. - Substitute the values of x and y into both equations to check your answers. Solve these simultaneous equations. $$y = x - 4 2x + 5y = 43$$ 3 $$2y = 4x + 5$$ $9x + 5y = 22$ $$4 2x = y - 2$$ $$8x - 5y = -11$$ $$5 \quad 3x + 4y = 8$$ $$2x - y = -13$$ $$6 \qquad 3y = 4x - 7$$ $$2y = 3x - 4$$ $$7 \quad 3x = y - 1 \\ 2y - 2x = 3$$ $$8 3x + 2y + 1 = 0 4y = 8 - x$$ ### **Extend** 9 Solve the simultaneous equations 3x + 5y - 20 = 0 and $2(x + y) = \frac{3(y - x)}{4}$. # Solving linear and quadratic simultaneous equations #### A LEVEL LINKS Scheme of work: 1c. Equations – quadratic/linear simultaneous # **Key points** - Make one of the unknowns the subject of the linear equation (rearranging where necessary). - Use the linear equation to substitute into the quadratic equation. - There are usually two pairs of solutions. # **Examples** **Example 1** Solve the simultaneous equations y = x + 1 and $x^2 + y^2 = 13$ | $x^2 + (x+1)^2 = 13$ | 1 Substitute $x + 1$ for y into the second equation. | |--|---| | $x^{2} + x^{2} + x + x + 1 = 13$ $2x^{2} + 2x + 1 = 13$ | 2 Expand the brackets and simplify. | | $2x^2 + 2x - 12 = 0$ | 3 Factorise the quadratic equation. | | (2x-4)(x+3) = 0
So $x = 2$ or $x = -3$ | 4 Work out the values of x. | | Using $y = x + 1$
When $x = 2$, $y = 2 + 1 = 3$
When $x = -3$, $y = -3 + 1 = -2$ | 5 To find the value of y, substitute both values of x into one of the original equations. | | So the solutions are $x = 2$, $y = 3$ and $x = -3$, $y = -2$ | | | Check:
equation 1: $3 = 2 + 1$ YES
and $-2 = -3 + 1$ YES | 6 Substitute both pairs of values of x and y into both equations to check your answers. | | equation 2: $2^2 + 3^2 = 13$ YES
and $(-3)^2 + (-2)^2 = 13$ YES | | **Example 2** Solve 2x + 3y = 5 and $2y^2 + xy = 12$ simultaneously. $$x = \frac{5 - 3j}{2}$$ $$2y^2 + \left(\frac{5-3y}{2}\right)y = 12$$ $$2y^2 + \frac{5y - 3y^2}{2} = 12$$ $$4y^2 + 5y - 3y^2 = 24$$ $$y^2 + 5y - 24 = 0$$ $$(y+8)(y-3)=0$$ So $$y = -8$$ or $y = 3$ Using 2x + 3y = 5 When y = -8, $2x + 3 \times (-8) = 5$, x = 14.5When y = 3, $2x + 3 \times 3 = 5$, x = -2 So the solutions are $$x = 14.5, y = -8$$ and $x = -2, y = 3$ Check: equation 1: $2 \times 14.5 + 3 \times (-8) = 5$ YES and $2 \times (-2) + 3 \times 3 = 5$ YES equation 2: $2 \times (-8)^2 + 14.5 \times (-8) = 12$ YES equation 2: $2 \times (-8)^2 + 14.5 \times (-8) = 12$ YES and $2 \times (3)^2 + (-2) \times 3 = 12$ YES 1 Rearrange the first equation. 2 Substitute $\frac{5-3y}{2}$ for x into the second equation. Notice how it is easier to substitute for x than for y. 3 Expand the brackets and simplify. 4 Factorise the quadratic equation. 5 Work out the values of y. 6 To find the value of x, substitute both values of y into one of the original equations. 7 Substitute both pairs of values of x and y into both equations to check your answers. ### Practice Solve these simultaneous equations. $$y = 2x + 1$$ $$x^2 + y^2 = 10$$ $$3 \qquad y = x - 3$$ $$x^2 + y^2 = 5$$ $$4 y = 9 - 2x x^2 + v^2 = 17$$ $$5 y = 3x - 5$$ $$y = x^2 - 2x + 1$$ 6 $$y = x - 5$$ $y = x^2 - 5x - 12$ $$7 y = x + 5$$ $$x^2 + y^2 = 25$$ 10 $$2x + y = 11$$ $xy = 15$ ### Extend 11 $$x-y=1$$ $x^2+y^2=3$ 12 $$y-x=2$$ $x^2 + xy = 3$ # Solving simultaneous equations graphically #### A LEVEL LINKS Scheme of work: 1c. Equations – quadratic/linear simultaneous # Key points You can solve any pair of simultaneous equations by drawing the graph of both equations and finding the point/points of intersection. # Examples **Example 1** Solve the simultaneous equations y = 5x + 2 and x + y = 5 graphically. y = 5 - x y = 5 - x has gradient -1 and y-intercept 5. y = 5x + 2 has gradient 5 and y-intercept 2. Lines intersect at x = 0.5, y = 4.5 Check: First equation y = 5x + 2: $$4.5 = 5 \times 0.5 + 2$$ YES Second equation x + y = 5: $$0.5 + 4.5 = 5$$ YES 1 Rearrange the equation x + y = 5 to make y the subject. 2 Plot both graphs on the same grid using the gradients and y-intercepts. - 3 The solutions of the simultaneous equations are the point of intersection. - Check your solutions by substituting the values into both equations. **Example 2** Solve the simultaneous equations y = x - 4 and $y = x^2 - 4x + 2$ graphically. | x | 0 | 1 | 2 | 3 | 4 | |---|---|----|----|----|---| | y | 2 | -1 | -2 | -1 | 2 | | | | | | | | The line and curve intersect at x = 3, y = -1 and x = 2, y = -2 Check: First equation y = x - 4: $$-1 = 3 - 4$$ $-2 = 2 - 4$ YES YES Second equation $y = x^2 - 4x + 2$: $$-1 = 3^2 - 4 \times 3 + 2$$ z + 2; YES $$-2 = 2^2 - 4 \times 2 + 2$$ YES - 1 Construct a table of values and calculate the points for the quadratic equation. - 2 Plot the graph. - 3 Plot the linear graph on the same grid using the gradient and y-intercept. y = x 4 has gradient 1 and y-intercept -4. - The solutions of the simultaneous equations are the points of intersection. - 5 Check your solutions by substituting the values into both equations. #### **Practice** 1 Solve these pairs of simultaneous equations graphically. **a** $$y = 3x - 1$$ and $y = x + 3$ **b** $$y = x - 5$$ and $y = 7 - 5x$ $$\mathbf{c}$$ $y = 3x + 4$ and $y = 2 - x$ 2 Solve these pairs of simultaneous equations graphically. a $$x + y = 0$$ and $y = 2x + 6$ **b** $$4x + 2y = 3$$ and $y = 3x - 1$ $$c$$ $2x + y + 4 = 0$ and $2y = 3x - 1$ 3 Solve these pairs of simultaneous equations graphically. a $$y = x - 1$$ and $y = x^2 - 4x + 3$ #### Hint Rearrange the equation to make ν the subject. **b** $$y = 1 - 3x$$ and $y = x^2 - 3x - 3$ $$y = 3 - x$$ and $y = x^2 + 2x + 5$ 4 Solve the simultaneous equations x + y = 1 and $x^2 + y^2 = 25$ graphically. # **Extend** - 5 a Solve the simultaneous equations 2x + y = 3 and $x^2 + y = 4$ - i graphically - ii algebraically to 2 decimal places. - **b** Which method gives the more accurate solutions? Explain your answer. # Linear inequalities #### A LEVEL LINKS Scheme of work: 1d. Inequalities – linear and quadratic (including graphical solutions) # **Key points** - Solving linear inequalities uses similar methods to those for solving linear equations. - When you multiply or divide an inequality by a negative number you need to reverse the inequality sign, e.g. < becomes >. # **Examples** #### Example 1 Solve $-8 \le 4x < 16$ | $-8 \le 4x < 16$ | Divide all three terms by 4. | |------------------|------------------------------| | $-2 \le x < 4$ | | #### Example 2 Solve $4 \le 5x < 10$ | $4 \le 5x < 10$ | Divide all three terms by 5. | |-------------------------|------------------------------| | $\frac{4}{5} \le x < 2$ | | #### Example 3 Solve 2x - 5 < 7 | 2x < 12 | 1 2 | Add 5 to both sides. Divide both sides by 2. | |--------------|-----|--| | <i>x</i> < 6 | | | #### Example 4 Solve $2 - 5x \ge -8$ | $ 2 - 5x \ge -8 $ $ -5x \ge -10 $ $ x \le 2 $ | Subtract 2 from both sides. Divide both sides by
-5. Remember to reverse the inequality when dividing by a negative number. | |---|---| | | - | #### Example 5 Solve 4(x-2) > 3(9-x) ### **Practice** Solve these inequalities. **a** $$4x > 16$$ **b** $$5x - 7 \le 1$$ **b** $$5x - 7 \le 3$$ **c** $1 \ge 3x + 4$ **d** $$5 - 2x < 12$$ e $$\frac{x}{2} \ge 5$$ d $$5-2x < 12$$ e $\frac{x}{2} \ge 5$ f $8 < 3 - \frac{x}{3}$ 2 Solve these inequalities. a $$\frac{x}{5} < -4$$ **b** $$10 \ge 2x + 3$$ **c** $7 - 3x > -5$ c $$7 - 3x > -3$$ 3 Solve **a** $$2-4x \ge 18$$ **a** $$2-4x \ge 18$$ **b** $3 \le 7x+10 < 45$ **c** $6-2x \ge 4$ c $$6-2x \ge 4$$ d $$4x + 17 < 2 - x$$ e $4 - 5x < -3x$ f $-4x \ge 24$ $$e \qquad 4 - 5r < -3r$$ $$f = -4r > 24$$ 4 Solve these inequalities. a $$3t+1 < t+6$$ **b** $$2(3n-1) \ge n+5$$ 5 Solve. a $$3(2-x) > 2(4-x) + 4$$ **b** $$5(4-x) > 3(5-x) + 2$$ #### Extend Find the set of values of x for which 2x + 1 > 11 and 4x - 2 > 16 - 2x. # Quadratic inequalities #### A LEVEL LINKS Scheme of work: 1d. Inequalities – linear and quadratic (including graphical solutions) # **Key points** - First replace the inequality sign by = and solve the quadratic equation. - Sketch the graph of the quadratic function. - Use the graph to find the values which satisfy the quadratic inequality. # **Examples** **Example 1** Find the set of values of x which satisfy $x^2 + 5x + 6 > 0$ $$x^{2} + 5x + 6 = 0$$ $$(x + 3)(x + 2) = 0$$ $$x = -3 \text{ or } x = -2$$ It is above the x-axis where $x^{2} + 5x + 6 > 0$ This part of the graph is not needed as this is where $x^{2} + 5x + 6 < 0$ - 1 Solve the quadratic equation by factorising. - 2 Sketch the graph of y = (x + 3)(x + 2) - 3 Identify on the graph where $x^2 + 5x + 6 > 0$, i.e. where y > 0 - Write down the values which satisfy the inequality $x^2 + 5x + 6 > 0$ **Example 2** Find the set of values of x which satisfy $x^2 - 5x \le 0$ x < -3 or x > -2 - 1 Solve the quadratic equation by factorising. - 2 Sketch the graph of y = x(x 5) - 3 Identify on the graph where $x^2 5x \le 0$, i.e. where $y \le 0$ - Write down the values which satisfy the inequality $x^2 - 5x \le 0$ **Example 3** Find the set of values of x which satisfy $-x^2 - 3x + 10 \ge 0$ $$\begin{vmatrix} -x^2 - 3x + 10 = 0 \\ (-x + 2)(x + 5) = 0 \\ x = 2 \text{ or } x = -5 \end{vmatrix}$$ 1 Solve the quadratic equation by factorising. 2 Sketch the graph of y = (-x + 2)(x + 5) = 0 3 Identify on the graph where $-x^2 - 3x + 10 \ge 0$, i.e. where $y \ge 0$ Write down the values which satisfy the inequality $-x^2 - 3x + 10 \ge 0$ # Practice 1 Find the set of values of x for which $(x + 7)(x - 4) \le 0$ 2 Find the set of values of x for which $x^2 - 4x - 12 \ge 0$ 3 Find the set of values of x for which $2x^2 - 7x + 3 < 0$ 4 Find the set of values of x for which $4x^2 + 4x - 3 > 0$ 5 Find the set of values of x for which $12 + x - x^2 \ge 0$ #### Extend Find the set of values which satisfy the following inequalities. 6 $$x^2 + x \le 6$$ 7 $$x(2x-9) < -10$$ 8 $$6x^2 \ge 15 + x$$ # Sketching cubic and reciprocal graphs #### A LEVEL LINKS Scheme of work: 1e. Graphs - cubic, quartic and reciprocal # Key points The graph of a cubic function, which can be written in the form $y = ax^3 + bx^2 + cx + d$, where $a \neq 0$, has one of the shapes shown here. The graph of a reciprocal function of the form $y = \frac{a}{y}$ has one of the shapes shown here. - To sketch the graph of a function, find the points where the graph intersects the axes. - To find where the curve intersects the y-axis substitute x = 0 into the function. - To find where the curve intersects the x-axis substitute y = 0 into the function. - Where appropriate, mark and label the asymptotes on the graph. - Asymptotes are lines (usually horizontal or vertical) which the curve gets closer to but never touches or crosses. Asymptotes usually occur with reciprocal functions. For example, the asymptotes for the graph of $y = \frac{a}{y}$ are the two axes (the lines y = 0 and x = 0). - At the turning points of a graph the gradient of the curve is 0 and any tangents to the curve at these points are horizontal. - A double root is when two of the solutions are equal. For example $(x-3)^2(x+2)$ has a double root at x = 3. - When there is a double root, this is one of the turning points of a cubic function. # **Examples** #### **Example 1** Sketch the graph of y = (x-3)(x-1)(x+2) To sketch a cubic curve find intersects with both axes and use the key points above for the correct shape. When $$x = 0$$, $y = (0 - 3)(0 - 1)(0 + 2)$ = $(-3) \times (-1) \times 2 = 6$ The graph intersects the y-axis at (0, 6) When $$y = 0$$, $(x - 3)(x - 1)(x + 2) = 0$ So $x = 3$, $x = 1$ or $x = -2$ The graph intersects the x-axis at (-2, 0), (1, 0) and (3, 0) - 1 Find where the graph intersects the axes by substituting x = 0 and y = 0. Make sure you get the coordinates the right way around, (x, y). - 2 Solve the equation by solving x-3=0, x-1=0 and x+2=0 - 3 Sketch the graph. a = 1 > 0 so the graph has the shape: ### **Example 2** Sketch the graph of $y = (x+2)^2(x-1)$ To sketch a cubic curve find intersects with both axes and use the key points above for the correct shape. When $$x = 0$$, $y = (0 + 2)^2(0 - 1)$ = $2^2 \times (-1) = -4$ The graph intersects the y-axis at (0, -4) When $$y = 0$$, $(x + 2)^2(x - 1) = 0$ So $x = -2$ or $x = 1$ (-2, 0) is a turning point as x = -2 is a double root. The graph crosses the x-axis at (1,0) - 1 Find where the graph intersects the axes by substituting x = 0 and y = 0. - 2 Solve the equation by solving x + 2 = 0 and x 1 = 0 - 3 a = 1 > 0 so the graph has the shape: # **Practice** 1 Here are six equations. $$\mathbf{A} \qquad y = \frac{5}{x}$$ **B** $$y = x^2 + 3x - 10$$ **C** $y = x^3 + 3x^2$ $$\mathbf{C} \qquad y = x^3 + 3x^2$$ Hint **D** $$y = 1 - 3x^2 - x^3$$ **E** $y = x^3 - 3x^2 - 1$ **F** $x + y = 5$ $$\mathbf{E} \qquad y = x^3 - 3x^2 - 1$$ $$\mathbf{F} \qquad x + y = 5$$ Find where each of the cubic equations cross the y-axis. Here are six graphs. ii iii iv vi Match each graph to its equation. a Copy the graphs ii, iv and vi and draw the tangent and normal each at point P. b Sketch the following graphs 2 $$y = 2x^3$$ 3 $$y = x(x-2)(x+2)$$ 4 $$v = (x+1)(x+4)(x-3)$$ 5 $$y = (x+1)(x-2)(1-x)$$ 6 $$y = (x-3)^2(x+1)$$ 7 $$y = (x-1)^2(x-2)$$ $$8 y = \frac{3}{x}$$ **Hint:** Look at the shape of $$y = \frac{a}{x}$$ in the second key point. $$y = -\frac{2}{x}$$ **Extend** 10 Sketch the graph of $$y = \frac{1}{x+2}$$ 11 Sketch the graph of $y = \frac{1}{x-1}$ 11 Sketch the graph of $$y = \frac{1}{x-1}$$ # Straight line graphs #### A LEVEL LINKS Scheme of work: 2a. Straight-line graphs, parallel/perpendicular, length and area problems # **Key points** - A straight line has the equation y = mx + c, where m is the gradient and c is the y-intercept (where x = 0). - The equation of a straight line can be written in the form ax + by + c = 0, where a, b and c are integers. - When given the coordinates (x_1, y_1) and (x_2, y_2) of two points on a line the gradient is calculated using the formula $$m = \frac{y_2 - y_1}{x_2 - x_1}$$ # **Examples** **Example 1** A straight line has gradient $-\frac{1}{2}$ and y-intercept 3. Write the equation of the line in the form ax + by + c = 0. $$m = -\frac{1}{2}$$ and $c = 3$ 1 A straight line has equation $y = mx + c$. Substitute the gradient and y-intercept given in the question into this equation. $\frac{1}{2}x + y - 3 = 0$ 2 Rearrange the equation so all the terms are on one side and 0 is on the other side. $x + 2y - 6 = 0$ 3 Multiply both sides by 2 to eliminate the denominator. **Example 2** Find the gradient and the y-intercept of the line with the equation 3y - 2x + 4 = 0. | 3y - 2x + 4 = 0 $3y = 2x - 4$ | 1 Make y the subject of the equation. | |--|--| | $3y = 2x - 4$ $y = \frac{2}{3}x - \frac{4}{3}$ | 2 Divide all the terms by three to get the equation in the form $y =$ | | Gradient = $m = \frac{2}{3}$ | 3 In the form $y = mx + c$, the gradient is m and the y-intercept is c. | | y -intercept = $c = -\frac{4}{3}$ | | Find the equation of the line which passes through the point (5, 13) and has gradient 3. Example 3 | m = 3 $y = 3x + c$ | Substitute the gradient given in the question into the equation of a straight line y = mx + c. Substitute the coordinates x = 5 and | |-------------------------------------|--| | $13 = 3 \times 5 + c$ $13 = 15 + c$ | y = 13 into the equation.3 Simplify and solve the equation. | | c = -2 $y = 3x - 2$ | 4 Substitute $c = -2$ into the equation $y = 3x + c$ | | | | **Example 4** Find the equation of the line passing through the points with coordinates (2, 4) and (8, 7). $$x_1 = 2$$, $x_2 = 8$, $y_1 = 4$ and $y_2 = 7$ $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{7 - 4}{8 - 2} = \frac{3}{6} = \frac{1}{2}$ 1 Substitute the coordinates into the equation $m = \frac{y_2 - y_1}{x_2 - x_1}$ to work out the gradient of the line. 2 Substitute the gradient into the equation of a straight line $y = mx + c$. 3 Substitute the coordinates of either point into the equation. 4 Simplify and solve the equation. 5 Substitute $c = 3$ into the equation $y = \frac{1}{2}x + c$ ### Practice Find the gradient and the y-intercept of the following equations. $$\mathbf{a} \qquad y = 3x + 5$$ **a** $$y = 3x + 5$$ **b** $y = -\frac{1}{2}x - 7$ **c** $2y = 4x - 3$ **d** $x + y = 5$ **e** $2x - 3y - 7 = 0$ **f** $5x + y - 4 = 0$ c $$2y = 4x - 3$$ $$\mathbf{d} \qquad x + y = 5$$ $$e 2x - 3y - 7 = 0$$
$$5x + y - 4 = 0$$ Rearrange the equations to the form y = mx + c Copy and complete the table, giving the equation of the line in the form y = mx + c. 2 | Gradient | y-intercept | Equation of the line | |----------|-------------|----------------------| | 5 | 0 | | | -3 | 2 | | | 4 | -7 | | Find, in the form ax + by + c = 0 where a, b and c are integers, an equation for each of the lines with the following gradients and y-intercepts. **a** gradient $$-\frac{1}{2}$$, y-intercept -7 **b** gradient 2, y-intercept 0 c gradient $$\frac{2}{3}$$, y-intercept 4 d gradient -1.2, y-intercept -2 Write an equation for the line which passes though the point (2, 5) and has gradient 4. 4 Write an equation for the line which passes through the point (6, 3) and has gradient $-\frac{2}{3}$ 5 Write an equation for the line passing through each of the following pairs of points. $$\mathbf{c} = (-1, -7), (5, 23)$$ #### Extend The equation of a line is 2y + 3x - 6 = 0. Write as much information as possible about this line. # Parallel and perpendicular lines #### A LEVEL LINKS Scheme of work: 2a. Straight-line graphs, parallel/perpendicular, length and area problems # **Key points** - When lines are parallel they have the same gradient. - A line perpendicular to the line with equation y = mx + c has gradient $-\frac{1}{m}$. # Examples **Example 1** Find the equation of the line parallel to y = 2x + 4 which passes through the point (4, 9). - 1 As the lines are parallel they have the same gradient. - Substitute m = 2 into the equation of a straight line y = mx + c. - Substitute the coordinates into the equation y = 2x + c - 4 Simplify and solve the equation. - Substitute c = 1 into the equation y = 2x + c **Example 2** Find the equation of the line perpendicular to y = 2x - 3 which passes through the point (-2, 5). $$y = 2x - 3$$ $$m = 2$$ $$-\frac{1}{m} = -\frac{1}{2}$$ $$y = -\frac{1}{2}x + c$$ $$5 = -\frac{1}{2} \times (-2) + c$$ $$5 = 1 + c$$ $$c = 4$$ $$y = -\frac{1}{2}x + 4$$ - 1 As the lines are perpendicular, the gradient of the perpendicular line is $-\frac{1}{m}$. - 2 Substitute $m = -\frac{1}{2}$ into y = mx + c. - 3 Substitute the coordinates (-2, 5) into the equation $y = -\frac{1}{2}x + c$ - 4 Simplify and solve the equation. - 5 Substitute c = 4 into $y = -\frac{1}{2}x + c$. A line passes through the points (0, 5) and (9, -1). Example 3 Find the equation of the line which is perpendicular to the line and passes through its midpoint. $$x_1 = 0$$, $x_2 = 9$, $y_1 = 5$ and $y_2 = -1$ $$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-1 - 5}{9 - 0}$$ $$= \frac{-6}{9} = -\frac{2}{3}$$ $$= \frac{1}{2} = \frac{3}{2}$$ $$y = \frac{3}{2}x + c$$ Midpoint = $$\left(\frac{0+9}{2}, \frac{5+(-1)}{2}\right) = \left(\frac{9}{2}, 2\right)$$ $$2 = \frac{3}{2} \times \frac{9}{2} + \epsilon$$ $$c = -\frac{19}{4}$$ $$y = \frac{3}{2}x - \frac{19}{4}$$ - 1 Substitute the coordinates into the equation $m = \frac{y_2 - y_1}{x_2 - x_1}$ to work out the gradient of the line. - 2 As the lines are perpendicular, the gradient of the perpendicular line - 3 Substitute the gradient into the equation y = mx + c. - 4 Work out the coordinates of the midpoint of the line. - 5 Substitute the coordinates of the midpoint into the equation. - 6 Simplify and solve the equation. - 7 Substitute $c = -\frac{19}{4}$ into the equation $$y = \frac{3}{2}x + c.$$ ## **Practice** Find the equation of the line parallel to each of the given lines and which passes through each of the given points. **a** $$y = 3x + 1$$ (3, 2) **b** $$y = 3 - 2x$$ (1, 3) a $$y = 3x + 1$$ (3, 2)b $y = 3 - 2x$ (1, 3)c $2x + 4y + 3 = 0$ (6, -3)d $2y - 3x + 2 = 0$ (8, 20) $$\mathbf{d} = 2y - 3x + 2 = 0 \quad (8, 20)$$ Find the equation of the line perpendicular to $y = \frac{1}{2}x - 3$ which passes through the point (-5, 3). Hint If $m = \frac{a}{b}$ then the negative reciprocal $-\frac{1}{m} = -\frac{b}{a}$ 2 Hint If $$m = \frac{a}{b}$$ then the negative reciprocal $-\frac{1}{m} = -\frac{b}{a}$ Find the equation of the line perpendicular to each of the given lines and which passes through each of the given points. **a** $$y = 2x - 6$$ (4, 0) **b** $$y = -\frac{1}{3}x + \frac{1}{2}$$ (2, 13) $$\mathbf{c}$$ $x-4y-4=0$ (5, 15) **d** $$5y + 2x - 5 = 0$$ (6, 7) In each case find an equation for the line passing through the origin which is also perpendicular to the line joining the two points given. a $$(4,3), (-2,-9)$$ ### **Extend** $$\mathbf{a} \qquad y = 2x + 3$$ $$y = 2x - 7$$ **b** $$y = 3x$$ $2x + y - 3 = 0$ $$y = 4x - 3$$ $$4y + x = 2$$ $$\mathbf{d} \qquad 3x - y + 5 = 0$$ $$x + 3y = 1$$ $$e 2x + 5y - 1 = 0$$ $$y = 2x + 7$$ $$\mathbf{f} \qquad 2x - y = 6 \\ 6x - 3y + 3 = 0$$ - 6 The straight line L_1 passes through the points A and B with coordinates (-4, 4) and (2, 1), respectively. - a Find the equation of L_1 in the form ax + by + c = 0 The line L_2 is parallel to the line L_1 and passes through the point C with coordinates (-8,3). **b** Find the equation of L₂ in the form ax + by + c = 0 The line \mathbf{L}_3 is perpendicular to the line \mathbf{L}_1 and passes through the origin. c Find an equation of L₃ # The cosine rule #### A LEVEL LINKS Scheme of work: 4a. Trigonometric ratios and graphs Textbook: Pure Year 1, 9.1 The cosine rule # **Key points** • *a* is the side opposite angle A. *b* is the side opposite angle B. *c* is the side opposite angle C. - You can use the cosine rule to find the length of a side when two sides and the included angle are given. - To calculate an unknown side use the formula $a^2 = b^2 + c^2 2bc \cos A$. - Alternatively, you can use the cosine rule to find an unknown angle if the lengths of all three sides are given. - To calculate an unknown angle use the formula $\cos A = \frac{b^2 + c^2 a^2}{2bc}$. # Examples Example 4 Work out the length of side w. Give your answer correct to 3 significant figures. $$a^2 = b^2 + c^2 - 2bc \cos A$$ $$w^2 = 8^2 + 7^2 - 2 \times 8 \times 7 \times \cos 45^\circ$$ $$w^2 = 33.80404051...$$ $$w = \sqrt{33.80404051}$$ $$w = 5.81 \text{ cm}$$ - 1 Always start by labelling the angles and sides. - 2 Write the cosine rule to find the side - 3 Substitute the values a, b and A into the formula. - 4 Use a calculator to find w^2 and then w. - 5 Round your final answer to 3 significant figures and write the units in your answer. Example 5 Work out the size of angle θ . Give your answer correct to 1 decimal place. $$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$ $$\cos \theta = \frac{10^2 + 7^2 - 15^2}{2 \times 10 \times 7}$$ $$\cos\theta = \frac{-76}{140}$$ $$\theta$$ = 122.878 349... $$\theta = 122.9^{\circ}$$ - 1 Always start by labelling the angles and sides. - 2 Write the cosine rule to find the angle. - 3 Substitute the values a, b and c into the formula. - 4 Use \cos^{-1} to find the angle. - 5 Use your calculator to work out $\cos^{-1}(-76 \div 140)$. - 6 Round your answer to 1 decimal place and write the units in your answer. ### **Practice** Work out the length of the unknown side in each triangle. Give your answers correct to 3 significant figures. a b c d Calculate the angles labelled $\boldsymbol{\theta}$ in each triangle. 2 Give your answer correct to 1 decimal place. a b d - Work out the length of WY. 3 a Give your answer correct to 3 significant figures. - Work out the size of angle WXY. Give your answer correct to 1 decimal place. # The sine rule #### A LEVEL LINKS Scheme of work: 4a. Trigonometric ratios and graphs Textbook: Pure Year 1, 9.2 The sine rule # **Key points** a is the side opposite angle A. b is the side opposite angle B. c is the side opposite angle C. - You can use the sine rule to find the length of a side when its opposite angle and another opposite side and angle are given. - To calculate an unknown side use the formula $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$. - Alternatively, you can use the sine rule to find an unknown angle if the opposite side and another opposite side and angle are given. - To calculate an unknown angle use the formula $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$. # Examples Example 6 Work out the length of side x. Give your answer correct to 3 significant figures. $$\frac{\sin A}{\sin 36^{\circ}} = \frac{10}{\sin 75^{\circ}}$$ $$x = \frac{10 \times \sin 36^{\circ}}{\sin 75^{\circ}}$$ $$x = 6.09 \text{ cm}$$ 1 Always start by labelling the angles and sides. - 2 Write the sine rule to find the side. - 3 Substitute the values a, b, A and B into the formula. - 4 Rearrange to make *x* the subject. - 5 Round your answer to 3 significant figures and write the units in your answer. Example 7 Work out the size of angle θ . Give your answer correct to 1 decimal place. $$\frac{\sin A}{a} = \frac{\sin B}{b}$$ $$\frac{\sin \theta}{8} = \frac{\sin 127^{\circ}}{14}$$ $$\sin \theta = \frac{8 \times \sin 127^{\circ}}{14}$$ - $\theta = 27.2^{\circ}$ - 1 Always start by labelling the angles and sides. - 2 Write the sine rule to find the angle. - 3 Substitute the values a, b, A and Binto the formula. - 4 Rearrange to make $\sin \theta$ the subject. - 5 Use sin-1 to find the angle. Round your answer to 1 decimal place and write the units in your answer. # Practice Find the length of the unknown side in each triangle. 1 Give your answers correct to 3 significant figures. a b c d 2 Calculate the angles labelled θ in each triangle. Give your answer correct to 1 decimal place. a b c d - 3 a Work out the length of QS. Give your answer correct to 3 significant figures. - b Work out the size of angle RQS. Give your answer correct to 1 decimal place. # Areas of triangles #### A LEVEL LINKS Scheme of work: 4a. Trigonometric ratios and graphs Textbook: Pure Year 1, 9.3 Areas of triangles # **Key points** - a is the side opposite angle A. b is the side opposite angle B. c is the side opposite angle C. - The area of the triangle is $\frac{1}{2}ab\sin C$. # **Examples** **Example 8** Find the area of the triangle. Area = $$\frac{1}{2}ab\sin C$$ Area =
$$\frac{1}{2} \times 8 \times 5 \times \sin 82^{\circ}$$ Area = $$19.8 \text{ cm}^2$$ 1 Always start by labelling the sides and angles of the triangle. - 2 State the formula for the area of a triangle. - 3 Substitute the values of a, b and C into the formula for the area of a triangle. - 4 Use a calculator to find the area. - 5 Round your answer to 3 significant figures and write the units in your answer. # Practice Work out the area of each triangle. Give your answers correct to 3 significant figures. a b c The area of triangle XYZ is 13.3 cm². Work out the length of XZ. Hint: Rearrange the formula to make a side the subject. #### Extend Find the size of each lettered angle or side. Give your answers correct to 3 significant figures. a c Hint: For each one, decide whether to use the cosine or sine rule. b d The area of triangle ABC is 86.7 cm². Work out the length of BC. Give your answer correct to 3 significant figures. # Rearranging equations #### A LEVEL LINKS Scheme of work: 6a. Definition, differentiating polynomials, second derivatives Textbook: Pure Year 1, 12.1 Gradients of curves # **Key points** - To change the subject of a formula, get the terms containing the subject on one side and everything else on the other side. - You may need to factorise the terms containing the new subject. # **Examples** **Example 1** Make t the subject of the formula v = u + at. | v = u + at $v - u = at$ | 1 Get the terms containing t on one side and everything else on the other side. | |-------------------------|---| | $t = \frac{v - u}{a}$ | 2 Divide throughout by a. | **Example 2** Make t the subject of the formula $r = 2t - \pi t$. | $r=2t-\pi t$ | 1 All the terms containing <i>t</i> are already on one side and everything else is on the other side. | |-------------------------|---| | $r=t(2-\pi)$ | 2 Factorise as t is a common factor. | | $t = \frac{r}{2 - \pi}$ | 3 Divide throughout by $2 - \pi$. | **Example 3** Make t the subject of the formula $\frac{t+r}{5} = \frac{3t}{2}$. | $\frac{t+r}{5} = \frac{3t}{2}$ | 1 Remove the fractions first by multiplying throughout by 10. | |--------------------------------|--| | 2t + 2r = 15t $2r = 13t$ | 2 Get the terms containing <i>t</i> on one side and everything else on the other side and simplify. | | $t = \frac{2r}{13}$ | 3 Divide throughout by 13. | Make t the subject of the formula $r = \frac{3t+5}{t}$. Example 4 $$r = \frac{3t+5}{t-1}$$ $$r(t-1) = 3t+5$$ $$rt-r = 3t+5$$ $$rt-3t = 5+r$$ $$t(r-3) = 5+r$$ $$t = \frac{5+r}{r-3}$$ - 1 Remove the fraction first by multiplying throughout by t - 1. - 2 Expand the brackets. - 3 Get the terms containing t on one side and everything else on the other - 4 Factorise the LHS as t is a common factor. - 5 Divide throughout by r 3. ### **Practice** Change the subject of each formula to the letter given in the brackets. $$1 \qquad C = \pi d \quad [d]$$ 2 $$P = 2l + 2w$$ [w] 2 $$P = 2l + 2w$$ [w] 3 $D = \frac{S}{T}$ [T] $$4 p = \frac{q - r}{t} [t]$$ 4 $$p = \frac{q-r}{t}$$ [t] 5 $u = at - \frac{1}{2}t$ [t] $$6 \qquad V = ax + 4x \quad [x]$$ 7 $$\frac{y-7x}{2} = \frac{7-2y}{3}$$ [y] 8 $x = \frac{2a-1}{3-a}$ [a] 8 $$x = \frac{2a-1}{3-a}$$ [a] $$9 x = \frac{b-c}{d} [d]$$ 10 $$h = \frac{7g - 9}{2 + g}$$ [g] 11 $$e(9+x) = 2e+1$$ [e] 11 $$e(9+x) = 2e+1$$ [e] 12 $y = \frac{2x+3}{4-x}$ [x] 13 Make r the subject of the following formulae. a $$A = \pi r^2$$ $$\mathbf{b} \qquad V = \frac{4}{3} \, \pi r^2$$ $$\mathbf{c} \qquad P = \pi r + 2$$ **a** $$A = \pi r^2$$ **b** $V = \frac{4}{3}\pi r^3$ **c** $P = \pi r + 2r$ **d** $V = \frac{2}{3}\pi r^2 h$ 14 Make x the subject of the following formulae. $$\mathbf{a} \qquad \frac{xy}{z} = \frac{ab}{cd}$$ $$\mathbf{b} \qquad \frac{4\pi cx}{d} = \frac{3z}{py^2}$$ 15 Make sin B the subject of the formula $\frac{a}{\sin A} = \frac{b}{\sin B}$ 16 Make $\cos B$ the subject of the formula $b^2 = a^2 + c^2 - 2ac \cos B$. # Extend 17 Make x the subject of the following equations. $$\mathbf{a} \qquad \frac{p}{q}(sx+t) = x-1$$ $$\mathbf{b} \qquad \frac{p}{q}(ax+2y) = \frac{3p}{q^2}(x-y)$$ # Area under a graph #### A LEVEL LINKS Scheme of work: 7b. Definite integrals and areas under curves # **Key points** To estimate the area under a curve, draw a chord between the two points you are finding the area between and straight lines down to the horizontal axis to create a trapezium. The area of the trapezium is an approximation for the area under a curve. • The area of a trapezium = $\frac{1}{2}h(a+b)$ # Examples Example 1 Estimate the area of the region between the curve y = (3 - x)(2 + x) and the x-axis from x = 0 to x = 3. Use three strips of width 1 unit. | x | 0 | 1 | 2 | 3 | |----------------|---|---|---|---| | y = (3-x)(2+x) | 6 | 6 | 4 | 0 | Trapezium 1: $$a_1 = 6 - 0 = 6$$, $b_1 = 6 - 0 = 6$ Trapezium 2: $$a_2 = 6 - 0 = 6$$, $b_2 = 4 - 0 = 4$ Trapezium 3: $$a_3 = 4 - 0 = 4$$, $a_3 = 0 - 0 = 0$ - 1 Use a table to record the value of y on the curve for each value of x. - Work out the dimensions of each trapezium. The distances between the *y*-values on the curve and the *x*-axis give the values for *a*. (continued on next page) $$\frac{1}{2}h(a_1 + b_1) = \frac{1}{2} \times 1(6+6) = 6$$ $$\frac{1}{2}h(a_2 + b_2) = \frac{1}{2} \times 1(6+4) = 5$$ $$\frac{1}{2}h(a_3 + b_3) = \frac{1}{2} \times 1(4+0) = 2$$ Area = 6 + 5 + 2 = 13 units² - Work out the area of each trapezium. h = 1 since the width of each trapezium is 1 unit. - 4 Work out the total area. Remember to give units with your answer. Example 2 Estimate the shaded area. Use three strips of width 2 units. | x | 4 | 6 | 8 | 10 | |---|---|----|----|----| | у | 7 | 12 | 13 | 4 | | 1 | x | 4 | 6 | 8 | 10 | |---|---|---|---|---|----| | | у | 7 | 6 | 5 | 4 | Trapezium 1: $$a_1 = 7 - 7 = 0$$, $b_1 = 12 - 6 = 6$ Trapezium 2: $$a_2 = 12 - 6 = 6$$, $b_2 = 13 - 5 = 8$ Trapezium 3: $$a_3 = 13 - 5 = 8$$, $a_3 = 4 - 4 = 0$ $$\frac{1}{2}h(a_1 + b_1) = \frac{1}{2} \times 2(0+6) = 6$$ $$\frac{1}{2}h(a_2 + b_2) = \frac{1}{2} \times 2(6+8) = 14$$ $$\frac{1}{2}h(a_3 + b_3) = \frac{1}{2} \times 2(8+0) = 8$$ Area = $$6 + 14 + 8 = 28$$ units² - 1 Use a table to record y on the curve for each value of x. - 2 Use a table to record y on the straight line for each value of x. - 3 Work out the dimensions of each trapezium. The distances between the y-values on the curve and the y-values on the straight line give the values for a. - 4 Work out the area of each trapezium. h = 2 since the width of each trapezium is 2 units. - 5 Work out the total area. Remember to give units with your answer. # Practice Estimate the area of the region between the curve y = (5 - x)(x + 2) and the x-axis from x = 1 to x = 5. Use four strips of width 1 unit. Hint: For a full answer, remember to include 'units²'. Estimate the shaded area shown on the axes.Use six strips of width 1 unit. - Estimate the area of the region between the curve $y = x^2 8x + 18$ and the x-axis from x = 2 to x = 6. Use four strips of width 1 unit. - Estimate the shaded area. Use six strips of width $\frac{1}{2}$ unit. - 5 Estimate the area of the region between the curve $y = -x^2 4x + 5$ and the x-axis from x = -5 to x = 1. Use six strips of width 1 unit. - 6 Estimate the shaded area. Use four strips of equal width. - Estimate the area of the region between the curve $y = -x^2 + 2x + 15$ and the x-axis from x = 2 to x = 5. Use six strips of equal width. - 8 Estimate the shaded area. Use seven strips of equal width. # Extend The curve $y = 8x - 5 - x^2$ and the line y = 2 are shown in the sketch. Estimate the shaded area using six strips of equal width. 10 Estimate the shaded area using five strips of equal width. # ICT Task: Transforming Graphs Go to www.desmos.com and select 'Start Graphing' Write descriptions for how the graph changes when you manipulate each slider. You can use the words such as amplitude, wavelength and frequency | | When it increases | When it decreases | When it is zero | When it doubles | |----------|-------------------|-------------------|-----------------|-----------------| | Slider a | | | | | | Slider b | | | | | | Slider c | | | | | | Slider d | | | | | | Type the Function and when it asks you to add sliders, select 'all'. | $(x-a)^2 + (y-b)^2 = r$ $r = 1$ | |---|---------------------------------| | Now use the sliders and explain how the shape of the graph changes for each variable. | a = -1 | | The screen should look similar to the screen shot here. | b = 1 | Write descriptions for how the graph changes when you manipulate each slider. You can use the words such as amplitude, wavelength and frequency | | When it increases | When it decreases | When it is zero | When it doubles | |----------|-------------------|-------------------|-----------------|-----------------| | Slider a | | | | | | Slider b | | | | | | Slider r | | | | | Challenge – You can make up random functions and see what the graph looks like and how it changes if you add constants and sliders. Here are some examples to explore. Make up your own functions and glue the graphs below. | $p(x-a)^2 + q(y-b)^2 = r$ | $\sin(x+a) + \cos(y+b) = 1$ | $\sin(x+a) + \cos(y+b) = \frac{1}{xy}$ | $\frac{1}{\sin(x+a)} + \frac{1}{\cos(x+b)} = y$ | |---------------------------|-----------------------------|--|---| #### **Answers for Part B:** ## Expanding brackets and simplifying expressions 1 **a** $$6x - 3$$ **b** $$-10pq - 8q^2$$ $$c = -3xy + 2y^2$$ 2 a $$21x + 35 + 12x - 48 = 33x - 13$$ **b** $$40p - 16 - 12p - 27 = 28p - 43$$ $$c$$ $27s + 9 - 30s + 50 = -3s + 59 = 59 - 3s$ **d** $$8x - 6 - 3x - 5
= 5x - 11$$ 3 a $$12x^2 + 24x$$ **b** $$20k^3 - 48k$$ c $$10h - 12h^3 - 22h^2$$ d $$21s^2 - 21s^3 - 6s$$ 4 a $$-y^2 - 4$$ **b** $$5x^2 - 11x$$ c $$2p - 7p^2$$ **d** $$6b^2$$ 5 $$v - 4$$ 6 a $$-1-2m$$ **b** $$5p^3 + 12p^2 + 27p$$ 7 $$7x(3x-5) = 21x^2 - 35x$$ 8 a $$x^2 + 9x + 20$$ $$x^2 + 5x - 14$$ e $$2x^2 + x - 3$$ $$g = 10x^2 - 31x + 15$$ i $$18x^2 + 39xy + 20y^2$$ $$k = 4x^2 - 28x + 49$$ **b** $$x^2 + 10x + 21$$ d $$x^2 - 25$$ f $$6x^2 - x - 2$$ h $$12x^2 + 13x - 14$$ $$x^2 + 10x + 25$$ 1 $$16x^2 - 24xy + 9y^2$$ 9 $$2x^2 - 2x + 25$$ 10 a $$x^2 - 1 - \frac{2}{x^2}$$ b $$x^2 + 2 + \frac{1}{x^2}$$ 11 Expand and simplify. a $$x^3 + 7x^2 + 14x + 8$$ c $$x^3 - 4x^2 - 59x + 126$$ e $$2x^3 - 3x^2 - 5x + 6$$ $$\mathbf{g}$$ $x^3 - 9x^2 + 27x - 27$ **b** $$x^3 + 6x^2 - 9x - 14$$ d $$x^3 - 11x^2 + 38x - 40$$ $$\mathbf{f} = 18x^3 - 15x^2 - 4x + 4$$ **h** $$x^4 - 12x^3 + 54x^2 - 108x + 81$$ #### Surds and rationalising the denominator 1 a $$3\sqrt{5}$$ e $$10\sqrt{3}$$ $$\mathbf{g} = 6\sqrt{2}$$ 2 a $$15\sqrt{2}$$ c $$3\sqrt{2}$$ c $$10\sqrt{5}-7$$ 4 a $$\frac{\sqrt{5}}{5}$$ $$c = \frac{2\sqrt{7}}{7}$$ $$e \sqrt{2}$$ $$g = \frac{\sqrt{3}}{3}$$ 5 a $$\frac{3+\sqrt{5}}{4}$$ $$6 \quad x-y$$ 7 **a** $$3+2\sqrt{2}$$ f $$2\sqrt{7}$$ $$\mathbf{h} = 9\sqrt{2}$$ d $$\sqrt{3}$$ f $$5\sqrt{3}$$ **b** $$9-\sqrt{3}$$ d $$26-4\sqrt{2}$$ $$\mathbf{b} \qquad \frac{\sqrt{11}}{11}$$ d $$\frac{\sqrt{2}}{2}$$ $$h \frac{1}{3}$$ b $$\frac{2(4-\sqrt{3})}{13}$$ $$\mathbf{b} \qquad \frac{\sqrt{x} + \sqrt{y}}{}$$ #### **Rules of indices** 1 a 1 **b** 1 - 1 - **d** 1 2 a 7 b 4 - e á - d 2 - **3 a** 125 - **b** 32 - e 343 - ď - 4 a $\frac{1}{25}$ - b $\frac{1}{64}$ - c - d $\frac{1}{36}$ - 5 **a** $\frac{3x^3}{2}$ - **b** $5x^2$ - **c** 3*x* - d $\frac{y}{2x^2}$ - \mathbf{e} $y^{\frac{1}{2}}$ - $\mathbf{f} = c^{-3}$ - $g = 2x^6$ - h x 6 a $\frac{1}{2}$ **b** $\frac{1}{9}$ $\frac{8}{3}$ $\mathbf{d} = \frac{1}{4}$ $e \frac{4}{3}$ $\mathbf{f} = \frac{16}{9}$ - 7 **a** x^{-1} - **b** x^{-7} $\frac{1}{x^4}$ - $a x^{\frac{2}{5}}$ - $e^{-\frac{1}{3}}$ - f $x^{-\frac{2}{3}}$ - 8 a $\frac{1}{x^3}$ - b e ⁵√x - $\mathbf{d} \qquad \sqrt[5]{x^2}$ - $e \frac{1}{\sqrt{x}}$ - $\mathbf{f} \qquad \frac{1}{\sqrt[4]{r^3}}$ - 9 a $5x^{\frac{1}{2}}$ - **b** $2x^{-3}$ - $c \frac{1}{2}x^{-4}$ - $2x^{\frac{1}{2}}$ - $e^{4x^{\frac{1}{3}}}$ - \mathbf{f} $3x^0$ - 10 a $x^3 + x^{-2}$ - $\mathbf{b} \qquad x^3 + x$ - c $x^{-2} + x^{-7}$ #### **Factorising expressions** 1 a $$2x^3y^3(3x-5y)$$ c $$5x^2y^2(5-2x+3y)$$ **b** $$7a^3b^2(3b^3+5a^2)$$ 2 a $$(x+3)(x+4)$$ c $$(x-5)(x-6)$$ e $$(x-9)(x+2)$$ $$g (x-8)(x+5)$$ **b** $$(x+7)(x-2)$$ **d** $$(x-8)(x+3)$$ f $$(x+5)(x-4)$$ **h** $$(x+7)(x-4)$$ 3 a $$(6x-7y)(6x+7y)$$ $$c = 2(3a - 10bc)(3a + 10bc)$$ $$\mathbf{b} \qquad (2x - 9y)(2x + 9y)$$ 4 a $$(x-1)(2x+3)$$ c $$(2x+1)(x+3)$$ e $$(5x+3)(2x+3)$$ **b** $$(3x+1)(2x+5)$$ d $$(3x-1)(3x-4)$$ f $$2(3x-2)(2x-5)$$ 5 a $$\frac{2(x+2)}{x-1}$$ $$c = \frac{x+2}{x}$$ $$e \frac{x+3}{x}$$ $$\mathbf{b} = \frac{x}{x-1}$$ d $$\frac{x}{x+5}$$ $$f = \frac{x}{x-5}$$ 6 a $$\frac{3x+4}{x+7}$$ $$c \qquad \frac{2-5x}{2x-3}$$ b $$\frac{2x+3}{3x-2}$$ $$\mathbf{d} = \frac{3x+1}{x+4}$$ $$7 (x+5)$$ 8 $$\frac{4(x+2)}{x-2}$$ #### Completing the square 1 a $$(x+2)^2-1$$ b $$(x-5)^2-28$$ $$(x-4)^2-16$$ d $$(x+3)^2-9$$ e $$(x-1)^2 + 6$$ $$f = \left(x + \frac{3}{2}\right)^2 - \frac{17}{4}$$ 2 a $$2(x-2)^2-24$$ **b** $$4(x-1)^2-20$$ c $$3(x+2)^2-21$$ **d** $$2\left(x+\frac{3}{2}\right)^2-\frac{25}{2}$$ 3 **a** $$2\left(x+\frac{3}{4}\right)^2+\frac{39}{8}$$ **b** $$3\left(x-\frac{1}{3}\right)^2-\frac{1}{3}$$ $$c = 5\left(x + \frac{3}{10}\right)^2 - \frac{9}{20}$$ **d** $$3\left(x+\frac{5}{6}\right)^2+\frac{11}{12}$$ 4 $$(5x+3)^2+3$$ #### Solving quadratic equations by factorisation 1 **a** $$x = 0$$ or $x = -\frac{2}{3}$ **b** $$x = 0 \text{ or } x = \frac{3}{4}$$ $$c x = -5 ext{ or } x = -2$$ **d** $$x = 2 \text{ or } x = 3$$ e $$x = -1 \text{ or } x = 4$$ $$f = x = -5 \text{ or } x = 2$$ $$g \quad x = 4 \text{ or } x = 6$$ f $$x = -5$$ or $x = 2$ h $x = -6$ or $x = 6$ i $$x = -7 \text{ or } x = 4$$ $$\mathbf{i}$$ $x=3$ $$k = -\frac{1}{2} \text{ or } x = 4$$ 1 $$x = -\frac{2}{3}$$ or $x = 5$ 2 a $$x = -2$$ or $x = 5$ **b** $$x = -1 \text{ or } x = 3$$ **c** $$x = -8 \text{ or } x = 3$$ **b** $$x = -1 \text{ or } x = 3$$ **d** $x = -6 \text{ or } x = 7$ **f** $x = -4 \text{ or } x = 7$ e $$x = -5 \text{ or } x = 5$$ $$f x = -4 \text{ or } x = 7$$ g $$x = -3 \text{ or } x = 2\frac{1}{2}$$ **h** $$x = -\frac{1}{3}$$ or $x = 2$ ### Solving quadratic equations by completing the square 1 a $$x = 2 + \sqrt{7}$$ or $x = 2 - \sqrt{7}$ 1 a $$x=2+\sqrt{7}$$ or $x=2-\sqrt{7}$ b $x=5+\sqrt{21}$ or $x=5-\sqrt{21}$ **c** $$x = -4 + \sqrt{21}$$ or $x = -4 - \sqrt{21}$ **d** $x = 1 + \sqrt{7}$ or $x = 1 - \sqrt{7}$ **d** $$x = 1 + \sqrt{7}$$ or $x = 1 - \sqrt{7}$ e $$x = -2 + \sqrt{6.5}$$ or $x = -2 - \sqrt{6.5}$ e $$x = -2 + \sqrt{6.5}$$ or $x = -2 - \sqrt{6.5}$ f $x = \frac{-3 + \sqrt{89}}{10}$ or $x = \frac{-3 - \sqrt{89}}{10}$ 2 $$\mathbf{a}$$ $x = 1 + \sqrt{14}$ or $x = 1 - \sqrt{14}$ 2 **a** $$x = 1 + \sqrt{14}$$ or $x = 1 - \sqrt{14}$ **b** $x = \frac{-3 + \sqrt{23}}{2}$ or $x = \frac{-3 - \sqrt{23}}{2}$ c $$x = \frac{5 + \sqrt{13}}{2}$$ or $x = \frac{5 - \sqrt{13}}{2}$ #### Solving quadratic equations by using the formula 1 **a** $$x = -1 + \frac{\sqrt{3}}{3}$$ or $x = -1 - \frac{\sqrt{3}}{3}$ **b** $x = 1 + \frac{3\sqrt{2}}{2}$ or $x = 1 - \frac{3\sqrt{2}}{2}$ **b** $$x = 1 + \frac{3\sqrt{2}}{2}$$ or $x = 1 - \frac{3\sqrt{2}}{2}$ 2 $$x = \frac{7 + \sqrt{41}}{2}$$ or $x = \frac{7 - \sqrt{41}}{2}$ 3 $$x = \frac{-3 + \sqrt{89}}{20}$$ or $x = \frac{-3 - \sqrt{89}}{20}$ 4 **a** $$x = \frac{7 + \sqrt{17}}{8}$$ or $x = \frac{7 - \sqrt{17}}{8}$ **b** $$x = -1 + \sqrt{10}$$ or $x = -1 - \sqrt{10}$ c $$x = -1\frac{2}{3}$$ or $x = 2$ ### Sketching quadratic graphs 1 3 a b C d e f 4 5 b c 6 Line of symmetry at x = -1. # Solving linear simultaneous equations using the elimination method 1 $$x = 1, y = 4$$ 2 $$x = 3, y = -2$$ 3 $$x = 2, y = -5$$ 4 $$x=3, y=-\frac{1}{2}$$ 5 $$x = 6, y = -1$$ 6 $$x = -2, y = 5$$ # Solving linear simultaneous equations using the substitution method 1 $$x = 9, y = 5$$ 2 $$x = -2, y = -7$$ 3 $$x = \frac{1}{2}, y = 3\frac{1}{2}$$ 4 $$x = \frac{1}{2}, y = 3$$ 5 $$x = -4, y = 5$$ 6 $$x = -2, y = -5$$ $$7 \qquad x = \frac{1}{4}, y = 1\frac{3}{4}$$ 8 $$x = -2, y = 2\frac{1}{2}$$ 9 $$x = -2\frac{1}{2}, y = 5\frac{1}{2}$$ # Solving linear and quadratic simultaneous equations 1 $$x = 1, y = 3$$ $x = -\frac{9}{5}, y = -\frac{13}{5}$ 2 $$x = 2, y = 4$$ $x = 4, y = 2$ 3 $$x = 1, y = -2$$ $x = 2, y = -1$ 4 $$x = 4, y = 1$$ $x = \frac{16}{5}, y = \frac{13}{5}$ 5 $$x = 3, y = 4$$ $x = 2, y = 1$ 6 $$x = 7, y = 2$$ $x = -1, y = -6$ 7 $$x = 0, y = 5$$ $x = -5, y = 0$ 8 $$x = -\frac{8}{3}, y = -\frac{19}{3}$$ $x = 3, y = 5$ 9 $$x = -2, y = -4$$ $x = 2, y = 4$ 10 $$x = \frac{5}{2}, y = 6$$ $x = 3, y = 5$ 11 $$x = \frac{1+\sqrt{5}}{2}, y = \frac{-1+\sqrt{5}}{2}$$ $x = \frac{1-\sqrt{5}}{2}, y = \frac{-1-\sqrt{5}}{2}$ 12 $$x = \frac{-1 + \sqrt{7}}{2}, y = \frac{3 + \sqrt{7}}{2}$$ $x = \frac{-1 - \sqrt{7}}{2}, y = \frac{3 - \sqrt{7}}{2}$ #### Solving simultaneous equations graphically 1 a $$x = 2, y = 5$$ **b** $$x = 2, y = -3$$ $$x = -0.5, y = 2.5$$ 2 a $$x = -2, y = 2$$ **b** $$x = 0.5, y = 0.5$$ e $$x = -1, y = -2$$ 3 a $$x = 1, y = 0 \text{ and } x = 4, y = 3$$ **b** $$x = -2, y = 7 \text{ and } x = 2, y = -5$$ $$x = -2, y = 5 \text{ and } x = -1, y = 4$$ 4 $$x = -3$$, $y = 4$ and $x = 4$, $y = -3$ 5 **a** i $$x = 2.5, y = -2 \text{ and } x = -0.5, y = 4$$ ii $$x = 2.41, y = -1.83$$ and $x = -0.41, y = 3.83$ **b** Solving algebraically gives the more accurate solutions as the solutions from the graph are only estimates, based on the accuracy of your graph. #### Linear inequalities 1 a $$x > 4$$ $$\mathbf{b} \qquad x \leq 2$$ c $$x \le -1$$ **d** $$x > -\frac{7}{2}$$ e $$x \ge 10$$ f $$x < -15$$ 2 a $$x < -20$$ b $$x \le 3.5$$ c $$x < 4$$ 3 a $$x \leq -4$$ b $$-1 \le x < 5$$ c $$x \le 1$$ d $$x < -3$$ e $$x > 2$$ f $$x \le -6$$ 4 a $$t < \frac{5}{2}$$ **b** $$n \geq \frac{7}{5}$$ 5 a $$x < -6$$ **b** $$x < \frac{3}{2}$$ 6 x > 5 (which also satisfies x > 3) #### Quadratic inequalities $$1 \qquad -7 \le x \le 4$$ $$2 x \le -2 or x \ge 6$$ $$3 \frac{1}{2} < x < 3$$ 4 $$x < -\frac{3}{2} \text{ or } x > \frac{1}{2}$$ 5 $$-3 \le x \le 4$$ 6 $$-3 \le x \le 2$$ $$7 \quad 2 < x < 2\frac{1}{2}$$ 8 $$x \le -\frac{3}{2} \text{ or } x \ge \frac{5}{3}$$ ### Sketching cubic and reciprocal graphs $$ii - E$$ $$v - F$$ $$vi - D$$ b ii iv vi #### Straight line graphs 1 **a** $$m = 3, c = 5$$ **b** $$m = -\frac{1}{2}, c = -7$$ c $$m = 2, c = -\frac{3}{2}$$ **d** $$m = -1, c = 5$$ c $$m = 2, c = -\frac{3}{2}$$ d $m = -1, c = 5$ e $m = \frac{2}{3}, c = -\frac{7}{3} \text{ or } -2\frac{1}{3}$ f $m = -5, c = 4$ $$f m = -5, c = 4$$ 2 | Gradient | y-intercept | Equation of the line | |----------|-------------|----------------------| | 5 | 0 | y = 5x | | -3 | 2 | y = -3x + 2 | | 4 | 7 | y = 4x - 7 | 3 **a** $$x + 2y + 14 = 0$$ **b** $2x - y = 0$ $$\mathbf{b} \qquad 2x - y = 0$$ **c** $$2x - 3y + 12 = 0$$ **d** $6x + 5y + 10 = 0$ $$6x + 5y + 10 = 0$$ $$4 \quad y = 4x - 3$$ 5 $$y = -\frac{2}{3}x + 7$$ **6 a** $$y = 2x - 3$$ **6 a** $$y = 2x - 3$$ **b** $y = -\frac{1}{2}x + 6$ $$n = 5r - 2$$ **c** $$y = 5x - 2$$ **d** $y = -3x + 19$ 7 $y = -\frac{3}{2}x + 3$, the gradient is $-\frac{3}{2}$ and the y-intercept is 3. The line intercepts the axes at (0, 3) and (2, 0). Students may sketch the line or give coordinates that lie on the line such as $\left(1, \frac{3}{2}\right)$ or $\left(4, -3\right)$. #### Parallel and perpendicular lines 1 **a** $$y = 3x - 7$$ **b** $$y = -2x + 5$$ **c** $$y = -\frac{1}{2}x$$ **c** $$y = -\frac{1}{2}x$$ **d** $y = \frac{3}{2}x + 8$ 2 $$y = -2x - 7$$ 3 a $$y = -\frac{1}{2}x + 2$$ b $y = 3x + 7$ $$\mathbf{b} \qquad y = 3x + 2$$ c $$y = -4x + 35$$ **c** $$y = -4x + 35$$ **d** $y = \frac{5}{2}x - 8$ **4 a** $$y =
-\frac{1}{2}x$$ **b** $y = 2x$ $$\mathbf{b} \qquad y = 2x$$ 6 a $$x + 2y - 4 = 0$$ **a** $$x + 2y - 4 = 0$$ **b** $x + 2y + 2 = 0$ $$\mathbf{c}$$ $y = 2x$ #### The cosine rule - a 6.46 cm - 9.26 cm - 70.8 mm - 9.70 cm - a 22.2° - 52.9° - 122.9° d - 93.6° - a 13.7 cm 3 - 76.0° #### The sine rule - 4.33 cm - 15.0 cm b - 45.2 mm **d** - 6.39 cm - 42.8° 2 - 52.8° - 53.6° **d** - 28.2° - a 8.13 cm - 32.3° b #### Areas of triangles - 1 a 18.1 cm² - **b** 18.7 cm² **c** 693 mm² - 5.10 cm - 3 a 6.29 cm - **b** 84.3° - e 5.73 cm d 58.8° 4 15.3 cm #### Rearranging equations - 1 $d=\frac{C}{z}$ - $2 w = \frac{P 2l}{2} 3 T = \frac{S}{D}$ - 4 $t = \frac{q r}{p}$ 5 $t = \frac{2u}{2a 1}$ 6 $x = \frac{V}{a + 4}$ - 7 y = 2 + 3x 8 $a = \frac{3x+1}{x+2}$ 9 $d = \frac{b-c}{r}$ - 10 $g = \frac{2h+9}{7-h}$ 11 $e = \frac{1}{x+7}$ 12 $x = \frac{4y-3}{2+v}$ - 13 a $r = \sqrt{\frac{A}{\pi}}$ b $r = \sqrt[3]{\frac{3V}{4\pi}}$ - $\mathbf{c} \qquad r = \frac{P}{\pi + 2} \qquad \qquad \mathbf{d} \qquad r = \sqrt{\frac{3V}{2\pi h}}$ - 14 a $x = \frac{abz}{cdv}$ b $x = \frac{3dz}{4\pi cDv^2}$ - 15 $\sin B = \frac{b \sin A}{a}$ - 16 $\cos B = \frac{a^2 + c^2 b^2}{2ac}$ - 17 a $x = \frac{q + pt}{q ps}$ b $x = \frac{3py + 2pqy}{3p apa} = \frac{y(3 + 2q)}{3 aa}$ ### Area under a graph - 1 34 units² - 2 149 units² - 3 14 units² - 4 $25\frac{1}{4}$ units² - 5 35 units² - **6** 42 units² - $7 \quad 26\frac{7}{8} \text{ units}^2$ - 8 56 units² - 9 35 units² - 10 $6\frac{1}{4}$ units²