## Year 11 to 12 TRANSITION <br> Preparation resources for Core Maths <br> (Level 3 Mathematical Studies)

This booklet contains GCSE topics and questions that will help you prepare for Core Maths content next year. Please find solutions/mark scheme at the end of the document.

## Number

1) Percentage multipliers
2) Money calculations and percentage change
3) Reverse percentages
4) Compound interest
5) Exchange rates
6) Estimation problems

## Area and volume

7) Area and surface area 27-32
8) Volume

32-37

## Data analysis

9) Averages problems
38-41
10) Cumulative frequency graphs

43-47
11) Box plots

47-51
12) Histograms

52-54
13) Stem and leaf diagrams $55-58$
14) Scatter graphs and lines of best fit 58 - 63
15) Sampling 63-67
16) Probability

68-69
MARK SCHEME

Any questions about Core maths, email me on alb.fej@sns.hackney.sch.uk. I look forward to teaching you Core maths next year! Ms Fejzo.

## Percentages with multipliers

Q1.

Write 0.8 as a percentage.

Q2.

Write 0.73 as a percentage

Q3.

Write $15 \%$ as a decimal.

Q4.

Work out $60 \%$ of 70

Q5.

Work out $70 \%$ of $£ 90$
$£$ $\qquad$

Q6.
Work out $234 \%$ of 150

## Q7.

Azmol is paid $£ 1500$ per month.
He is going to get a $3 \%$ increase in the amount of money he is paid.
Work out how much money Azmol will be paid per month after the increase.
£ $\qquad$

## Money calculations and percentages

Q8.

Trevor buys a boat.
The cost of the boat is £14 200 plus VAT at $20 \%$
Trevor pays a deposit of $£ 5000$
He pays the rest of the cost in 10 equal payments.
Work out the amount of each of the 10 payments.
$£$.
(Total for question = 4 marks)
Q9.

Irena sells ice creams.
One day she sells 80 ice creams.
The next day she sells 108 ice creams.
Work out the percentage increase in the number of ice creams she sells.

Q10.

In a sale, the price of a jacket is reduced.
The jacket has a normal price of $£ 52$
The jacket has a sale price of $£ 41.60$
Work out the percentage reduction in the price of the jacket.

## Q11.

Emily buys a pack of 12 bottles of water.
The pack costs $£ 5.64$
Emily sells all 12 bottles for 50p each.
Work out Emily's percentage profit.
Give your answer correct to 1 decimal place.

## Q12.

In a shop, the normal price of a coat is $£ 65$
The shop has a sale.
In week 1 of the sale, the price of the coat is reduced by 20\%
In week 2 of the sale, the price of the coat is reduced by a further $£ 10$
Maria has $£ 40$
Does Maria have enough money to buy the coat in week 2 of the sale?
You must show how you get your answer.

Q13.
Sean pays $£ 10$ for 24 chocolate bars.
He sells all 24 chocolate bars for 50p each.
Work out Sean's percentage profit.

Q14.
Last year Jo paid £245 for her car insurance.
This year she has to pay £883 for her car insurance.
Work out the percentage increase in the cost of her car insurance.
$\qquad$

## Reverse percentages

## Q15.

In a sale, the price of a TV is reduced by $25 \%$
A week later, the sale price of the TV is reduced by $15 \%$ The price of the TV is now $£ 293.25$

What was the price of the TV before the sale?
£

Q16.

Jules buys a washing machine.
$20 \%$ VAT is added to the price of the washing machine. Jules then has to pay a total of $£ 600$

What is the price of the washing machine with no VAT added?
£

Q17.

In a sale, normal prices are reduced by $20 \%$.
The normal price of a coat is reduced by $£ 15$
Work out the normal price of the coat.
£
(Total for question = $\mathbf{2}$ marks)

Q18.

In a sale, the normal price of a book is reduced by $30 \%$.
The sale price of the book is $£ 2.80$
Work out the normal price of the book.

## Compound interest

## Q19.

Toby invested $£ 7500$ for 2 years in a savings account. He was paid $4 \%$ per annum compound interest.

How much money did Toby have in his savings account at the end of 2 years?
$£$ $\qquad$
(Total for question is $\mathbf{2}$ marks)

Q20.

Katy invests $£ 200000$ in a savings account for 4 years.
The account pays compound interest at a rate of $1.5 \%$ per annum.
Calculate the total amount of interest Katy will get at the end of 4 years.
$\qquad$

Q21.

Northern Bank has two types of account.
Both accounts pay compound interest.

Cash savings account Interest
$2.5 \%$ per annum

Ali invests $£ 2000$ in the cash savings account. Ben invests $£ 1600$ in the shares account.
(a) Work out who will get the most interest by the end of 3 years.

You must show all your working.

In the 3rd year the rate of interest for the shares account is changed to $4 \%$ per annum.
(b) Does this affect who will get the most interest by the end of 3 years?

Give a reason for your answer.
$\qquad$
$\qquad$
$\qquad$

Q22.

Naoby invests $£ 6000$ for 5 years.
The investment gets compound interest of $x \%$ per annum.
At the end of 5 years the investment is worth $£ 8029.35$
Work out the value of $x$.

Q23.

Katy invests $£ 2000$ in a savings account for 3 years.
The account pays compound interest at an annual rate of
$2.5 \%$ for the first year
$x \%$ for the second year
$x \%$ for the third year
There is a total amount of $£ 2124.46$ in the savings account at the end of 3 years.
(a) Work out the rate of interest in the second year.

Katy goes to work by train.
The cost of her weekly train ticket increases by $12.5 \%$ to $£ 225$
(b) Work out the cost of her weekly train ticket before this increase.
$£$. $\qquad$

Q24.

At the beginning of 2009, Mr Veale bought a company.
The value of the company was $£ 50000$
Each year the value of the company increased by $2 \%$.
(a) Calculate the value of the company at the beginning of 2017

Give your answer correct to the nearest $£ 100$
£ $\qquad$

At the beginning of 2009 the value of a different company was $£ 250000$ In 6 years the value of this company increased to $£ 325000$

This is equivalent to an increase of $x \%$ each year.
(b) Find the value of $x$.

Give your answer correct to 2 significant figures.

Q25.

Jean invests $£ 12000$ in an account paying compound interest for 2 years.
In the first year the rate of interest is $x \%$
At the end of the first year the value of Jean's investment is $£ 12336$
In the second year the rate of interest is $\frac{x}{2}$ \%
What is the value of Jean's investment at the end of 2 years?
£ $\qquad$

Q26.

Sakira invested $£ 3550$ in a savings account for 3 years.
She was paid $2.6 \%$ per annum compound interest for each of the first 2 years.
She was paid $R \%$ interest for the third year.
Sakira had $£ 3819.21$ in her savings account at the end of the 3 years.
Work out the value of $R$.
Give your answer correct to 1 decimal place.

Q27.
lan invested an amount of money at 3\% per annum compound interest.
At the end of 2 years the value of the investment was $£ 2652.25$
(a) Work out the amount of money lan invested.
$\qquad$

Noah has an amount of money to invest for five years.


| Investment Account |
| :--- |
| $21 \%$ interest paid at the |
| end of 5 years. |

Noah wants to get the most interest possible.
(b) Which account is best?

You must show how you got your answer.
(Total for question is 5 marks)

Q28.

The population of a city increased by $5.2 \%$ for the year 2014
At the beginning of 2015 the population of the city was 1560000
Lin assumes that the population will continue to increase at a constant rate of $5.2 \%$ each year.
(a) Use Lin's assumption to estimate the population of the city at the beginning of 2017 Give your answer correct to 3 significant figures.
(b) (i) Use Lin's assumption to work out the year in which the population of the city will reach 2000000
(ii) If Lin's assumption about the rate of increase of the population is too low, how might this affect your answer to (b)(i)?
$\qquad$
$\qquad$
$\qquad$

## Q29.

In 2016 the population of the UK was $6.5 \times 10^{7}$
Laura wants to calculate an estimate for the population of the UK in 2020
She assumes that the population increases by $0.6 \%$ each year.
(a) Using Laura's assumption, calculate an estimate for the population of the UK in 2020

Kieran also assumes that the population of the UK increases by $0.6 \%$ each year.
He says that it will take over 80 years for the population to increase by $50 \%$ because $\frac{50}{0.6}=83 . \dot{3}$
Kieran's method is wrong.
(b) Explain what is wrong with his method.
$\qquad$
$\qquad$

Assuming that the population of the UK increases by $0.6 \%$ each year,
(c) show that the population of the UK each year forms a geometric progression.

## Exchange rates

Q30.

Three companies sell the same type of furniture.
The price of the furniture from Pooles of London is $£ 1480$
The price of the furniture from Jardins of Paris is $€ 1980$
The price of the furniture from Outways of New York is $\$ 2250$
The exchange rates are
$£ 1=€ 1.34$
$£ 1=\$ 1.52$
Which company sells this furniture at the lowest price?
You must show how you get your answer.

Q31.

Three companies sell the same type of furniture.
The price of the furniture from Pooles of London is $£ 1480$
The price of the furniture from Jardins of Paris is €1980
The price of the furniture from Outways of New York is $\$ 2250$
The exchange rates are
$£ 1=€ 1.34$
$£ 1=\$ 1.52$
Which company sells this furniture at the lowest price?
You must show how you get your answer.

Q32.

In London, 1 litre of petrol costs 108.9p
In New York, 1 US gallon of petrol costs $\$ 2.83$
1 US gallon = 3.785 litres
£1 = \$1.46
In which city is petrol better value for money, London or New York? You must show your working.

## Q33.

Gina finds out the price of a CD box set in three different countries.
The price is
£98 in the UK
\$134.99 in the USA
€139.99 in Germany
The exchange rates are
$£ 1=\$ 1.43$
$€ 1=£ 0.73$
Gina wants to pay the cheapest price for the box set.
(a) From which country should Gina buy the box set?

You must show how you get your answer.

Gina lives in the UK.
(b) Why might your answer to (a) not be the best country for Gina to buy the box set from?
$\qquad$

Q34.
Andy went on holiday to Canada.
His flights cost a total of $£ 1500$
Andy stayed for 14 nights.
His hotel room cost $\$ 196$ per night.
Andy used wifi for 12 days.
Wifi cost $\$ 5$ per day.
The exchange rate was $\$ 1.90$ to $£ 1$
(a) Work out the total cost of the flights, the hotel room and Wi-Fi.

Give your answer in pounds.
$£$ $\qquad$
(b) If there were fewer dollars to $£ 1$, what effect would this have on the total cost, in pounds, of Andy's holiday?
$\qquad$

## Estimation problems

Q35.
(a) Work out an estimate for the value of $\sqrt{63.5 \times 101.7}$
$(2.3)^{6}=148$ correct to 3 significant figures.
(b) Find the value of $(0.23)^{6}$ correct to 3 significant figures.
(c) Find the value of $5^{-2}$

Q36.

A container is in the shape of a cuboid.


The container is $\frac{2}{3}$ full of water.
A cup holds 275 ml of water.
What is the greatest number of cups that can be completely filled with water from the container?

## Q37.

(a) Write 7357 correct to 3 significant figures.
(b) Work out $\frac{\sqrt{17+4^{2}}}{7.3^{2}}$

Write down all the figures on your calculator display.

Q38.

A person's heart beats approximately $10^{5}$ times each day.
A person lives for approximately 81 years.
(a) Work out an estimate for the number of times a person's heart beats in their lifetime.

Give your answer in standard form correct to 2 significant figures.
$2 \times 10^{12}$ red blood cells have a total mass of 90 grams.
(b) Work out the average mass of 1 red blood cell. Give your answer in standard form.

Q39.

Paul organised an event for a charity.
Each ticket for the event cost $£ 19.95$
Paul sold 395 tickets.
Paul paid costs of $£ 6000$
He gave all money left to the charity.
(a) Work out an estimate for the amount of money Paul gave to the charity.
£. $\qquad$
(b) Is your answer to (a) an underestimate or an overestimate?

Give a reason for your answer.
$\qquad$
$\qquad$

## Q40.

This shape is made from two rectangles.

(a) Work out an estimate for the total area of the shape.
$\qquad$
(b) Is your answer to (a) an overestimate or an underestimate?

Give a reason for your answer.

Q41.

A unit of gas costs 4.2 pence.
On average Ria uses 50.1 units of gas a week.
She pays for the gas she uses in 13 weeks.
(a) Work out an estimate for the amount Ria pays
(b) Is your estimate to part (a) an underestimate or an overestimate?

Give a reason for your answer.
$\qquad$
$\qquad$

Q42.

A cone has a volume of $98 \mathrm{~cm}^{3}$.
The radius of the cone is 5.13 cm .

$$
\text { Volume of cone }=\frac{1}{3} \pi r^{2} h
$$


(a) Work out an estimate for the height of the cone.

John uses a calculator to work out the height of the cone to 2 decimal places.
(b) Will your estimate be more than John's answer or less than John's answer?

Give reasons for your answer.
$\qquad$
$\qquad$
$\qquad$

Q43.

A cycle race across America is 3069.25 miles in length.
Juan knows his average speed for his previous races is 15.12 miles per hour.
For the next race across America he will cycle for 8 hours per day.
(a) Estimate how many days Juan will take to complete the race.

Juan trains for the race.
The average speed he can cycle at increases.
It is now 16.27 miles per hour.
(b) How does this affect your answer to part (a)?
$\qquad$
$\qquad$

## Q44.

Work out an estimate for the value of $\frac{43.2 \times \sqrt{99.05}}{0.193}$

## Area and surface area problems

Q45.

A garden is in the shape of a rectangle 90 m by 60 m .
Flowers are grown in $40 \%$ of the garden.
The rest of the garden is grass
Work out the area of the garden that is grass.


Q46.

The diagram shows a shape $A B C D E F$.


All the corners of the shape are right angles.
The perimeter of the shape is 28 m .
Work out the area of $A B C E$ shown shaded on the diagram.

## Q47.

Maisie knows that she needs 3 kg of grass seed to make a rectangular lawn 5 m by 9 m .
Grass seed is sold in 2 kg boxes.
Maisie wants to make a rectangular lawn 10 m by 14 m .
She has 5 boxes of grass seed.
(a) Has Maisie got enough grass seed to make a lawn 10 m by 14 m ?

You must show all your working.

Maisie opens the 5 boxes of grass seed.
She finds that 4 of the boxes contain 2 kg of grass seed.
The other box contains 1 kg of grass seed.
(b) Does this affect whether Maisie has enough grass seed to make her lawn?

Give a reason for your answer.
$\qquad$
$\qquad$
$\qquad$

## Q48.

The diagram shows a rectangular garden path.


Wasim is going to cover the path with paving stones.
Each paving stone is a square of side 30 cm .
Each paving stone costs $£ 2.50$
Wasim has £220 to spend on paving stones.
Show that he has enough money to buy all the paving stones he needs.
(Total for question = 4 marks)
Q49.

Here is a diagram showing a rectangle, $A B C D$, and a circle.

$B C$ is a diameter of the circle.
Calculate the percentage of the area of the rectangle that is shaded.
Give your answer correct to 1 decimal place.

## Q50.

The diagram shows 3 identical circles inside a rectangle.
Each circle touches the other two circles and the sides of the rectangle, as shown in the diagram.


The radius of each circle is 24 mm .

Work out the area of the rectangle.
Give your answer correct to 3 significant figures.
$\mathrm{mm}^{2}$
(Total for question = 4 marks)

Q51.

Carpet tiles are going to be used to cover a floor.
The floor is a 1200 mm by 1000 mm rectangle.
Each carpet tile is a 40 cm by 30 cm rectangle.
Exactly 10 carpet tiles can be used to cover the floor completely.
Show in a labelled sketch how this can be done.

Q52.

A sofa has 6 identical cushions.
Each cushion is a cuboid 18 cm by 80 cm by 95 cm .


The cushions are covered with a protective spray.
The protective spray is in cans.
The label on each can has this information.

$$
\text { Spray in this can covers } 4 \mathrm{~m}^{2}
$$

(a) Work out how many cans are needed to cover the 6 cushions with protective spray.

The information on each label is inaccurate.
The spray in each can covers $10 \%$ more than $4 \mathrm{~m}^{2}$.
(b) How will this affect the number of cans needed for the 6 cushions?

You must show how you get your answer.

## Volume problems

Q53.

The diagram shows a solid hemisphere.


The volume of the hemisphere is $\frac{250}{3} \pi$
Work out the exact total surface area of the solid hemisphere.
Give your answer as a multiple of $\pi$.

Q54.
$V A B C D$ is a solid pyramid.

$A B C D$ is a square of side 20 cm .
The angle between any sloping edge and the plane $A B C D$ is $55^{\circ}$
Calculate the surface area of the pyramid.
Give your answer correct to 2 significant figures.

## Q55.

Here is a triangular prism.


Work out the volume of the prism.
Give your answer correct to 3 significant figures.
$\mathrm{cm}^{3}$
(Total for question = 5 marks)

## Q56.

The diagram shows a sand pit.
The sand pit is in the shape of a cuboid.


Sally wants to fill the sand pit with sand.
A bag of sand costs $£ 2.50$
There are 8 litres of sand in each bag.
Sally
"The sand will cost less than £70"
Show that Sally is wrong.

## Q57.

The diagram shows a tank in the shape of a cuboid. It also shows a container in the shape of a cuboid.


The tank is full of oil.
The container is empty.
$35 \%$ of the oil from the tank is spilled.
The rest of the oil from the tank is put into the container.
Work out the height of the oil in the container.
Give your answer to an appropriate degree of accuracy.

Q58.

The diagram shows a hemisphere with diameter 8.4 cm .


Work out the volume of the hemisphere.
Give your answer correct to 3 significant figures.
$\qquad$ $\mathrm{cm}^{3}$

Q59.

Here is a cuboid.


Work out the volume of the cuboid.

Q60.

The diagram shows a fish tank in the shape of a cuboid.


The dimensions of the tank are 50 cm by 32 cm by 20 cm .
The tank is $\frac{3}{4}$ full of water and sand.
The ratio of the volume of water to the volume of sand is $5: 1$
Work out the number of litres of water in the tank.
You must show all your working.
litres

## Averages and spread

Q61.

Here is a list of numbers

| 12 | 19 | 12 | 15 | 11 | 15 | 12 | 13 | 17 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Find the median.

Q62.
The table shows some information about the dress sizes of 25 women.

| Dress size | Number of women |
| :---: | :---: |
| 8 | 2 |
| 10 | 9 |
| 12 | 8 |
| 14 | 6 |

(a) Find the median dress size.

3 of the 25 women have a shoe size of 7

Zoe says that if you choose at random one of the 25 women, the probability that she has either a shoe size of 7 or a dress size of 14 is $\frac{9}{25}$ because

$$
\frac{3}{25}+\frac{6}{25}=\frac{9}{25}
$$

(b) Is Zoe correct?

You must give a reason for your answer.
$\qquad$

Q63.

Matthew has eight cards.
There is a number on each card.

(a) Work out the range of the numbers on the cards.
(b) Work out the median of the numbers on the cards.

Q64.

Ross rolled an ordinary dice 30 times.
The frequency table gives information about his results.

| Score | Frequency |
| :---: | :---: |
| 1 | 7 |
| 2 | 5 |
| 3 | 4 |
| 4 | 4 |
| 5 | 6 |
| 6 | 4 |

Ross worked out the mean score as 8
(a) Explain why it is impossible for the mean score to be 8
$\qquad$
$\qquad$

Graham also worked out the mean score.
Here is his working.

```
1\times7+2\times5+3\times4+4\times4+5\times6+6\times4=99
99\div6=16.5
The mean score is 16.5
```

(b) Describe the mistake Graham made in his method to work out the mean score.
$\qquad$
$\qquad$

Q65.
20 men, 10 women and 10 children are in a competition.
The mean score for the women is 15.6
The mean score for the children is 9.2
Kevin says that the mean score for all 40 people is 11.2
(a) Work out the mean score for the men.

Kevin was wrong.
The mean score for all 40 people was actually 11.15
(b) How does this affect the mean score for the men?
$\qquad$
$\qquad$

Q66.

The table gives information about the times taken, in seconds, by 18 students to run a race.

| Time $(t$ seconds) | Frequency |
| :---: | :---: |
| $5<t \leqslant 10$ | 1 |
| $10<t \leqslant 15$ | 2 |
| $15<t \leqslant 20$ | 7 |
| $20<t \leqslant 25$ | 8 |

Work out an estimate for the mean time.
Give your answer correct to 3 significant figures.

Q67.

There is a total of 45 boys and girls in a choir.
The mean age of the 18 boys is 16.2 years.
The mean age of the 27 girls is 16.7 years.
Calculate the mean age of all 45 boys and girls.

Q68.
A bus company recorded the ages, in years, of the people on coach $A$ and the people on coach $B$. Here are the ages of the 23 people on coach $A$.

| 41 | 42 | 44 | 48 | 52 | 53 | 53 | 53 | 56 | 57 | 57 | 59 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 60 | 61 | 63 | 64 | 64 | 66 | 67 | 69 | 74 | 77 | 79 |  |

(a) Complete the table below to show information about the ages of the people on coach A .

| Median |  |
| :--- | :---: |
| Lower quartile |  |
| Upper quartile |  |
| Least age | 41 |
| Greatest age | 79 |

Here is some information about the ages of the people on coach B.

| Median | 70 |
| :--- | :---: |
| Lower quartile | 54 |
| Upper quartile | 73 |
| Least age | 42 |
| Greatest age | 85 |

Richard says that the people on coach A are younger than the people on coach B.
(b) Is Richard correct?

You must give a reason for your answer.
$\qquad$
$\qquad$
$\qquad$

Richard says that the people on coach A vary more in age than the people on coach $B$.
(c) Is Richard correct?

You must give a reason for your answer.
$\qquad$
$\qquad$
$\qquad$

## Cumulative frequency diagrams

## Q69.

The cumulative frequency table shows information about the times, in minutes, taken by 40 people to complete a puzzle.

| Time ( $m$ minutes) | Cumulative <br> frequency |
| :---: | :---: |
| $20<m \leqslant 40$ | 5 |
| $20<m \leqslant 60$ | 25 |
| $20<m \leqslant 80$ | 35 |
| $20<m \leqslant 100$ | 38 |
| $20<m \leqslant 120$ | 40 |

(a) On the grid below, draw a cumulative frequency graph for this information.

(b) Use your graph to find an estimate for the interquartile range.
$\qquad$ minutes

One of the 40 people is chosen at random.
(c) Use your graph to find an estimate for the probability that this person took between 50 minutes and 90 minutes to complete the puzzle.
$\qquad$

Q70.
The table gives information about the weekly wages of 80 people.

| Wage (£ $w$ ) | Frequency |
| :---: | :---: |
| $200<w \leqslant 250$ | 5 |
| $250<w \leqslant 300$ | 10 |
| $300<w \leqslant 350$ | 20 |
| $350<w \leqslant 400$ | 20 |
| $400<w \leqslant 450$ | 15 |
| $450<w \leqslant 500$ | 10 |

(a) Complete the cumulative frequency table.

| Wage (£w) | Cumulative <br> frequency |
| :---: | :---: |
| $200<w \leqslant 250$ |  |
| $200<w \leqslant 300$ |  |
| $200<w \leqslant 350$ |  |
| $200<w \leqslant 400$ |  |
| $200<w \leqslant 450$ |  |
| $200<w \leqslant 500$ |  |

(b) On the grid below, draw a cumulative frequency graph for your completed table.

" $60 \%$ of this group of people have a weekly wage of $£ 360$ or less."
(c) Is Juan correct?

You must show how you get your answer.
(3)
(Total for question = 6 marks)

## Q71.

Francesco carried out a survey about the ages of the people in his office.
The table shows information about his results.

| Age ( $a$ years) | Cumulative frequency |
| :---: | :---: |
| $20<a \leqslant 30$ | 10 |
| $20<a \leqslant 40$ | 26 |
| $20<a \leqslant 50$ | 58 |
| $20<a \leqslant 60$ | 66 |
| $20<a \leqslant 70$ | 70 |

(a) On the grid opposite, draw a cumulative frequency graph for this information.

(b) Use your graph to find an estimate for the median age.

Francesco says,
"More than $60 \%$ of the people in the office are between 35 and 55 years old."
(c) Use your graph to determine if Francesco is correct.
$\qquad$

Q72.

Joan measured the heights of students in four different classes.
She drew a cumulative frequency graph and a box plot for each class.






Match each cumulative frequency graph to its box plot.

| Cumulative frequency <br> graph | Box plot |
| :---: | :---: |
| A |  |
| B |  |
| C |  |
| D |  |
|  |  |

(Total for question = $\mathbf{2}$ marks)

## Box plots

Q73.
The stem and leaf diagram shows the ages, in years, of 25 people.

| 1 | 7 | 7 | 8 | 9 |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 1 | 2 | 4 | 4 | 5 | 5 | 6 | 7 | 8 | 9 | 9 |
| 3 | 0 | 1 | 2 | 2 | 3 | 4 | 5 | 6 |  |  |  |
| 4 | 0 | 1 |  |  |  |  |  |  |  |  |  |

Key: $1 \mid 7$ represents 17 years
(a) (i) On the grid, draw a box plot for this information.


One of these people is chosen at random.
(ii) What is the probability that this person is 30 years of age or older?

The grouped frequency table gives information about the ages of a different group of people.

| Age ( $a$ years) | Frequency |
| :---: | :---: |
| $0<a \leqslant 20$ | 7 |
| $20<a \leqslant 30$ | 12 |
| $30<a \leqslant 40$ | 5 |
| $40<a \leqslant 50$ | 1 |

Anne drew this cumulative frequency table for this information.

| Age ( $a$ years) | Cumulative <br> frequency |
| :---: | :---: |
| $0<a \leqslant 20$ | 7 |
| $20<a \leqslant 30$ | 19 |
| $30<a \leqslant 40$ | 24 |
| $40<a \leqslant 50$ | 25 |

The cumulative frequency table is not correct.
(b) Write down one thing that is wrong with the table.
$\qquad$

Q74.

Megan grows potatoes.
The box plot below shows information about the weights of Megan's potatoes.


Megan says that half of her potatoes weigh less than 50 grams each.
(a) Is Megan correct?

Give a reason for your answer.
$\qquad$
$\qquad$
$\qquad$

Amy also grows potatoes.
The box plot below shows information about the weights of Amy's potatoes.

(b) Compare the distribution of the weights of Megan's potatoes with the distribution of the weights of Amy's potatoes.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Q75.

Aisha recorded the heights, in centimetres, of some girls.
She used her results to work out the information in this table.

| Least height | 142 cm |
| :--- | :---: |
| Lower quartile | 154 cm |
| Interquartile range | 17 cm |
| Median | 162 cm |
| Range | 40 cm |

Aisha drew this box plot for the information in the table. The box plot is not fully correct.


Write down the two things Aisha should do to make the box plot fully correct.
1 $\qquad$
$\qquad$
$\qquad$

2 $\qquad$
$\qquad$
$\qquad$

## Q76.

The times that 48 trains left a station on Monday were recorded.
The cumulative frequency graph gives information about the numbers of minutes the trains were delayed, correct to the nearest minute.


The shortest delay was 0 minutes.
The longest delay was 42 minutes.
(a) On the grid below, draw a box plot for the information about the delays on Monday.


48 trains left the station on Tuesday.
The box plot below gives information about the delays on Tuesday.

(b) Compare the distribution of the delays on Monday with the distribution of the delays on Tuesday.
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Mary says,
"The longest delay on Tuesday was 33 minutes.
This means that there must be some delays of between 25 minutes and 30 minutes."
(c) Is Mary right?

You must give a reason for your answer.
$\qquad$
$\qquad$

## Histograms

Q77.

The table gives information about the speeds, in $\mathrm{km} / \mathrm{h}$, of 81 cars.

| Speed $(s \mathbf{~ k m} / \mathbf{h})$ | Frequency |
| :---: | :---: |
| $90<s \leqslant 100$ | 13 |
| $100<s \leqslant 105$ | 16 |
| $105<s \leqslant 110$ | 18 |
| $110<s \leqslant 120$ | 22 |
| $120<s \leqslant 140$ | 12 |

(a) On the grid, draw a histogram for the information in the table.

(b) Find an estimate for the median.

## Q78.

The table gives information about the heights of 150 students.

| Height $(\boldsymbol{h} \mathbf{~ c m})$ | Frequency |
| :---: | :---: |
| $140<h \leqslant 150$ | 15 |
| $150<h \leqslant 155$ | 30 |
| $155<h \leqslant 160$ | 51 |
| $160<h \leqslant 165$ | 36 |
| $165<h \leqslant 180$ | 18 |

(a) On the grid, draw a histogram for this information.

(b) Work out an estimate for the fraction of the students who have a height between 150 cm and 170 cm .
$\qquad$

## Q79.

The histogram shows some information about the ages of the 134 members of a sports club.

$20 \%$ of the members of the sports club who are over 50 years of age are female.
Work out an estimate for the number of female members who are over 50 years of age.

## Stem and leaf diagrams

Q80.

Here are the speeds, in kilometres per hour, of 15 cyclists.

| 16 | 22 | 34 | 18 | 24 |
| :--- | :--- | :--- | :--- | :--- |
| 22 | 33 | 28 | 19 | 41 |
| 23 | 25 | 31 | 40 | 23 |

Show this information in a stem and leaf diagram.

Q81.

Here are the heights, in centimetres, of 15 children.

| 123 | 147 | 135 | 150 | 147 |
| :--- | :--- | :--- | :--- | :--- |
| 129 | 148 | 149 | 125 | 137 |
| 133 | 138 | 133 | 130 | 151 |

(a) Show this information in a stem and leaf diagram.


One of the children is chosen at random.
(b) What is the probability that this child has a height greater than 140 cm ?
$\qquad$

Q82.

The stem and leaf diagram shows information about the heights, in cm , of the boys in a class.

| 14 | 0 | 2 | 9 |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 15 | 1 | 1 | 3 | 5 | 7 |  |
| 16 | 2 | 4 | 5 | 7 | 8 | 9 |
| 17 | 6 | 6 | 7 | 9 |  |  |
| 18 | 0 | 0 | 1 |  |  |  |

```
Key: 15 | 1 represents }151\textrm{cm
```

(a) Find the median height.
$\qquad$

The girls in the class have a median height of 162 cm .
Their heights have a range of 45 cm .
(b) Compare the distribution of the heights of the boys with the distribution of the heights of the girls.
$\qquad$

Q83.

The stem and leaf diagram gives information about the speeds of 27 cars.

(a) Find the median speed.
$\qquad$ miles per hour
(b) Work out the range.
$\qquad$

One of the cars is chosen at random.
Jack says,
"The probability that the speed of this car is more than 60 miles per hour is $\frac{1}{3}$ "
(c) Jack is wrong.

Explain why.
$\qquad$
$\qquad$

## Q84.

The table shows information about the heights, in cm , of a group of Year 9 girls.

| least height | 150 cm |
| :--- | :--- |
| median | 165 cm |
| greatest height | 170 cm |

This stem and leaf diagram shows information about the heights, in cm, of a group of 15 Year 9 boys.

| 15 | 8 | 9 | 9 |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 16 | 4 | 5 | 7 | 7 | 8 |  |
| 17 | 0 | 3 | 4 | 4 | 7 |  |
| 18 | 0 | 2 |  |  |  |  |

Key: $15 \mid 8$ represents 158 cm

Compare the distribution of the heights of the girls with the distribution of the heights of the boys.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(Total for question = 3 marks)

## Scatter graphs and lines of best fit

Q85.

Jean records the maximum daily temperature each day for 10 days.
She also records the number of children going to a paddling pool for each of these days.
She draws this scatter graph for her information.


Jean's information for one of these days is an outlier on the scatter graph.
(a) Give a possible reason for this.
$\qquad$
$\qquad$
(b) What type of correlation does the scatter graph show?

On the 11th day, the maximum daily temperature was $19^{\circ} \mathrm{C}$.
(c) Write down an estimate for the number of children going to the paddling pool on the 11th day.
$\qquad$

It would not be sensible to use the scatter graph to predict the number of children going to the paddling pool on a day when the maximum daily temperature was $13^{\circ} \mathrm{C}$.
(d) Give a reason why.
$\qquad$
$\qquad$

## Q86.

The scatter diagram shows information about 10 students.
For each student, it shows the number of hours spent revising and the mark the student achieved in a Spanish test.


One of the points is an outlier.
(a) Write down the coordinates of the outlier.
$\qquad$

For all the other points
(b) (i) draw the line of best fit,
(ii) describe the correlation.
$\qquad$
$\qquad$

A different student revised for 9 hours.
(c) Estimate the mark this student got

The Spanish test was marked out of 100
Lucia says,
"I can see from the graph that had I revised for 18 hours I would have got full marks."
(d) Comment on what Lucia says.
$\qquad$
$\qquad$

Q87.

The scatter diagram shows information about 12 girls.
It shows the age of each girl and the best time she takes to run 100 metres.

(a) Write down the type of correlation.
$\qquad$

Kristina is 11 years old.

Her best time to run 100 metres is 12 seconds.
The point representing this information would be an outlier on the scatter diagram.
(b) Explain why
$\qquad$
$\qquad$

Debbie is 15 years old.
Debbie says,
"The scatter diagram shows I should take less than 12 seconds to run 100 metres."
(c) Comment on what Debbie says.
$\qquad$
$\qquad$

Q88.

The scatter graph shows information about 10 adult snakes of the same type.
It shows the length and weight of each snake.


An adult snake of this type has a weight of 740 g .
(a) Use the scatter graph to estimate the length of this snake.

Steven wants to estimate the weight of an adult snake of length 110 cm .
He says he will draw a line of best fit and read off the weight at 110 cm .
(b) Explain what is wrong with his method.
$\qquad$
$\qquad$

## Q89.

Oliver records the distance from London to each of eight cities in the USA.
He also records the time taken to fly from London to each of these cities.
The scatter graph shows this information.


Chicago is a city in the USA.
Chicago is 4000 miles from London.
(a) (i) By drawing a line of best fit, find an estimate for the time taken to fly from London to Chicago.
minutes
(ii) Why is your answer to part (i) only an estimate?
$\qquad$
(b) (i) Calculate the gradient of your line of best fit.
(ii) Give an interpretation of the gradient of your line of best fit.

## Sampling

Q90.

Hannah is planning a day trip for 195 students.
She asks a sample of 30 students where they want to go.
Each student chooses one place.
The table shows information about her results.

| Place | Number of students |
| :--- | :---: |
| Theme Park | 10 |
| Theatre | 5 |
| Sports Centre | 8 |
| Seaside | 7 |

(i) Work out how many of the 195 students you think will want to go to the Theme Park.
(ii) State any assumption you made and explain how this may affect your answer.
$\qquad$
$\qquad$
$\qquad$

## Q91.

There are $p$ counters in a bag.
12 of the counters are yellow.
Shafiq takes at random 30 counters from the bag.
5 of these 30 counters are yellow.
Work out an estimate for the value of $p$.

Q92.

Each person in a fitness club is going to get a free gift.
Stan is going to order the gifts.
Stan takes a sample of 50 people in the fitness club. He asks each person to tell him the gift they would like.

The table shows information about his results.

| Gift | Number of people |
| :--- | :---: |
| sports bag | 17 |
| gym towel | 7 |
| headphones | 11 |
| voucher | 15 |

There are 700 people in the fitness club.
(i) Work out how many sports bags Stan should order.
(ii) Write down any assumption you made and explain how this could affect your answer.
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Q93.

Shirley wants to find an estimate for the number of bees in her hive.
On Monday she catches 90 of the bees.
She puts a mark on each bee and returns them to her hive.
On Tuesday she catches 120 of the bees.
She finds that 20 of these bees have been marked.
(a) Work out an estimate for the total number of bees in her hive.

Shirley assumes that none of the marks had rubbed off between Monday and Tuesday.
(b) If Shirley's assumption is wrong, explain what effect this would have on your answer to part (a).
$\qquad$
$\qquad$

Q94.

There are 1200 students at a school.
Kate is helping to organise a party.
She is going to order pizza.
Kate takes a sample of 60 of the students at the school.
She asks each student to tell her one type of pizza they want.
The table shows information about her results.

| Pizza | Number of students |
| :---: | :---: |
| ham | 20 |
| salami | 15 |
| vegetarian | 8 |
| margherita | 17 |

Work out how much ham pizza Kate should order.
Write down any assumption you make and explain how this could affect your answer.

## Probability

Q95.

Stuart throws a biased coin 10 times.
He gets 7 Tails.
Maxine throws the same coin 50 times.
She gets 30 Tails.
Prasha is going to throw the coin once.
(i) Whose results will give the better estimate for the probability that she will get Tails, Stuart's or Maxine's?
You must give a reason for your answer.
$\qquad$
$\qquad$
$\qquad$
(ii) Use Stuart's and Maxine's results to work out an estimate for the probability that Prasha will get Tails.
$\qquad$

Q96.

There are 300 seeds in a packet of flower seeds.
Each seed will grow into a white flower or a yellow flower or a red flower.
The probability of a seed growing into a white flower is 0.62
45 of the seeds are expected to grow into yellow flowers.
One of the seeds is chosen at random from the packet.
What is the probability that this seed will grow into a red flower?

## Q97.

Here is a 4-sided spinner.


The table shows the probabilities that when the spinner is spun it will land on 1 , on 3 and on 4

| Number | 1 | 2 | 3 | 4 |
| :--- | :---: | :---: | :---: | :---: |
| Probability | 0.2 |  | 0.4 | 0.1 |

The spinner is spun once.
(a) Work out the probability that the spinner will land on 2
$\qquad$
(b) Which number is the spinner least likely to land on?
$\qquad$

Jake is going to spin the spinner 60 times.
(c) Work out an estimate for the number of times the spinner will land on 1
$\qquad$

## Mark Scheme

Q1.

| Question | Working | Answer |  | Notes |
| :--- | :---: | :---: | :--- | :---: |
|  |  | 80 | B1 |  |

Q2.

| Question | Answer | Mark | Mark scheme | Additional guidance |
| :--- | :---: | :--- | :--- | :--- |
|  | 73 | B1 | cao |  |

Q3.

| Question | Answer | Mark | Mark scheme | Additional guidance |
| :--- | :---: | :---: | :--- | :--- |
|  | 0.15 | B1 | cao |  |

Q4.

| Question | Working | Answer | Mark | Notes |
| :--- | :---: | :---: | :---: | :--- |
|  |  | 42 | M1 | for showing method to work out $60 \%$ of 70 , eg $0.6 \times 70$ <br> or $(70 \div 10) \times 6(=42)$ <br> cao |

Q5.

| Paper 1MA1: 2F |  |  |  |
| :---: | :---: | :---: | :---: |
| Question | Working | Answer | Notes |
|  |  | 63 | M1 <br> A1for a method to find <br> quantity |

Q6.

| Paper 1MA1: 3F |  |  |  |  |
| :---: | :---: | :---: | :--- | :--- |
| Question | Working | Answer | Notes |  |
|  |  | 351 | M1 for $2.34 \times 150$ oe |  |
|  |  |  | A1 |  |

Q7.

| Question | Working | Answer | Mark | Notes |
| :--- | :---: | :---: | :---: | :--- |
|  |  | 1545 | M1 <br> A1 | shows a method to find 3\% eg $1500 \times 0.03(=45)$ <br> cao |
|  |  |  | A1 |  |

Q8.

| Question | Answer | Mark | Mark scheme | Additional guidance |
| :---: | :---: | :---: | :---: | :---: |
|  | 1204 | P2 | for a full process to find $120 \%$ of 14200 $\begin{aligned} & \mathrm{eg}, 1.2 \times 14200(=17040) \text { or }(0.2 \times \\ & 14200)+14200(=17040) \end{aligned}$ |  |
|  |  | (P1 | for process to find $20 \%$ of 14200 eg , $0.2 \times 14200(=2840)$ oe) |  |
|  |  | P1 | $\text { for }[\text { cost }]-5000$ | [cost] must be greater than $14200$ |
|  |  |  | SCB1 for answer of 920 if P0 scored |  |

Q9.

| Question | Working | Answer | Notes |
| :--- | :---: | :---: | :--- | :--- |
|  |  | 35 | M1 for method to find increase $108-80(=28)$ <br> M1 for method to find \% increase eg $\frac{28}{80} \times 100$ <br> A1  <br> cao  |
|  |  |  | and |

Q10.

| Question |  | Working | Answer | Mark | Notes |
| :--- | :---: | :---: | :---: | :---: | :--- |
|  |  | 20 | 3 | M1 for $52-41.6(=10.4)$ <br> M1 " $10.4 " \div 52 \times 100$ <br> A1 for 20 |  |

Q11.

| Question | Working | Answer | Mark | Notes |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & £ 6-£ 5.64= \\ & 36 p \text { or } \\ & 50 p-47 p=3 p \end{aligned}$ | 6.4 | P1 | for a strategy to compare the same number of bottles e.g. $£ 5.64 \div 12(=47$ or 0.47$)$ or $12 \times 50$ p $(=6$ or 600$)$ or 36 or 0.36 or 3 or 0.03 |
|  |  |  | P1 | for start of process to find percentage profit e.g. $\frac{\text { " } 36 \text { " }}{564}$ or $\frac{" 3 "}{" 47 "}$ or $\frac{" 6 "}{5.64}$ or $\frac{50}{" 47 "}$ oe with consistent units |
|  | $6.3829787 \ldots \%$ |  | A1 | for answer in the range 6.3 to 6.4 |

Q12.

| Paper 1MA1: 2F |  |  |  |  |
| :---: | :---: | :---: | :--- | :--- |
| Question | Working | Answer | Notes |  |
|  |  | for 'no' with <br> supporting <br> evidence | P1 | for correct process to find price in <br> Week 1, |
|  |  | eg. $65 \times 0.8(=52)$ |  |  |
| for process to find the price in week 2, |  |  |  |  |
| eg. "52" $10(=42)$ |  |  |  |  |
| for 'no' with supporting evidence |  |  |  |  |

Q13.

| Question | Answer | Mark | Mark scheme | Additional guidance |
| :---: | :---: | :---: | :---: | :---: |
|  | 20 | P1 <br> P1 <br> A1 | for process to find SP of 24 chocolate bars, eg. $0.50 \times 24(=12)$ oe or for process to find the overall profit eg $(24 \times 0.5)-10(=2)$ or for process to find CP of one chocolate bar, eg. $1000 \div 24(=41.66 \ldots)$ oe (dep) for start to a process to find percentage profit, eg. using " $\frac{12 \text { " }-10}{10}$ or $\frac{" 12 "}{10}$ or $\frac{50-" 41.66 \ldots "}{" 41.66 \ldots "}$ oe with consistent units cao | Working can be carried out in either pounds or pence. |

Q14.

| Question | Answer | Mark | Mark scheme | Additional guidance |
| :--- | :---: | :---: | :--- | :--- |
|  | 260 to <br> 260.5 | M1 | for $883-245(=638)$ <br> or $883 \div 245(=3.60 .)$. <br> or $883 \div 245 \times 100(=360(.408 \ldots))$ oe |  |
|  | M1 | for a complete method to find the <br> percentage increase <br> eg " $638 " \div 245 \times 100(=260(.408 .))$. <br> or $883 \div 245 \times 100-100(=260(.408))$. <br> oe |  |  |

Q15.

| Question | Working | Answer | Mark | Notes |
| :--- | :---: | :---: | :---: | :--- |
|  |  | 460 | P1 | for a process to find the cost after the first <br> reduction, <br> e.g. $293.25 \div 0.85(=345)$ <br> (dep) for a complete process to find the initial <br> cost, <br> e.g. " $345 " \div 0.75$ |
|  |  |  | A1 |  |
| cao |  |  |  |  |

Q16.

| Question | Working | Answer | Mark | Notes |
| :---: | :---: | :---: | :---: | :---: |
|  | 500 | M1 | recognition of 1.2 or $120 \%$ oe eg $600 \div$ <br> 1.2 oe or $x \times 1.2=600$ oe or $120 \%=600$ <br> cao |  |

Q17.

| Paper 1MA1: 1F |  |  |  |  |
| :---: | :---: | :---: | :--- | :--- |
| Question | Working | Answer |  | Notes |
|  |  | 75 | P1 | for start to process eg. linking 20\% with 15 or 100 <br> $\div 5(=20)$ |
|  |  | A1 |  |  |

Q18.

| Question | Working | Answer | Mark | Notes |
| :--- | :---: | :---: | :---: | :--- |
|  |  | 4 | M1 | for a complete method eg $2.80 \times 100 \div$ <br> $(100-30)$ oe or $2.80 \div 0.7$ oe |
| or for build up method but must show all |  |  |  |  |
| intermediate steps unless all figures are |  |  |  |  |
| correct eg $2.8 \div 7=0.4$ and " "0.40" $\times 10(=4)$ |  |  |  |  |
| cao |  |  |  |  |

Q19.

| Paper 1MA1: 2H |  |  |  |  |
| :---: | :---: | :---: | :--- | :--- |
| Question | Working | Answer | Notes |  |
|  |  | 8112 | M1for complete method, eg. 7500 $\times$ <br>  |  |
|  |  | $1.04^{2}$ |  |  |
| cao |  |  |  |  |

Q20.

| Question | Answer | Mark | Mark scheme | Additional guidance |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & 12272.70 \\ & 12272.71 \text { or } \\ & 12272.72 \end{aligned}$ | M1 | for evidence of using a correct first step eg $200000 \times 0.015(=3000)$ or $200000 \times$ $1.015(=203000)$ |  |
|  |  | M1 | for evidence of a compound interest method eg $203000 \times 0.015(=3045)$ or $203000 \times 1.015(=206045)$ <br> or $206045 \times 0.015(=3090.675)$ or $206045 \times 1.015(=209135.675)$ <br> or $209135.675 \times 0.015(=3137.035 \ldots)$ <br> or $209135.675 \times 1.015$ ( $212272.710 \ldots$ ) <br> or $200000 \times 1.015^{\mathrm{t}}, t \geq 2$ <br> for $12272.7(0)$ or 12272.71 or 12272.72 <br> SC B2 for $212272.7(0)$ or 212272.71 or 212272.72 | values may be rounded or truncated to 2 dp |

Q21.

| Question | Answer | Mark | Mark scheme | Additional guidance |
| :---: | :---: | :---: | :---: | :---: |
| (a) | Ben (supported) | P1 | shows how to work interest out for one year eg $2000 \times 0.025(=50)$ <br> or $1600 \times 0.035(=56)$ or 150 or 168 <br> or $2000 \times 1.025(=2050)$ or $1600 \times 1.035(=$ 1656) | Throughout accept figures $\pm 1$ pence which do not need to be presented in money notation (to 2 dp ) or with monetary symbols. |
|  |  | P1 | shows compound interest calculation for one account $\begin{aligned} & \text { eg } 2050 \rightarrow 51.25 \text { or } 2101.25 \rightarrow 52.53 \\ & \quad \text { or } 1656 \rightarrow 57.96 \text { or } 1713.96 \rightarrow 59.99 \\ & \text { eg } 2000 \times 1.025^{3}(=2153.78) \text { or } 1600 \times 1.035^{3} \\ & (=1773.95) \end{aligned}$ | Award mark for a correct process shown, for which these figures can be taken as implying the process. |
|  |  | P1 | shows complete compound interest calculation for both accounts $\begin{aligned} & \text { eg } 2000 \times 1.025^{3}(=2153.78) \text { and } 1600 \times 1.035^{3} \\ & (=1773.95) \end{aligned}$ <br> OR <br> one interest stated correctly <br> eg 153.78 or 173.95 | As above, award mark for both correct processes shown for both accounts, which these figures can be taken as implying the process. |
|  |  | C1 | Ben (shares) supported by 153.78 and 173.95 | Accept an answer of "shares". |
| (b) | conclusion | C1 | conclusion (ft) eg no change, shares now | Conclusion needs to be supported. <br> ft is from part (a); calculations carried out as part of (b) need to be correct for the comparison to be valid. |
|  |  |  | 182.5 .. |  |
|  |  |  | Acceptable examples no since shares/Ben now 182.5 |  |
|  |  |  | Still Ben since $182.5>$ Ali |  |
|  |  |  | No; he only gets 8.57 more |  |
|  |  |  | No; he gets 68.56 instead of $59.98\left(3^{\text {rd }} \mathrm{yr}\right)$ |  |
|  |  |  | No; Ben already gets more interest, he would just get even more |  |
|  |  |  | Not acceptable examples no |  |
|  |  |  | shares now 182.5 |  |
|  |  |  | Still Ben since less than Ali |  |
|  |  |  | $182.5>153.78$ |  |
|  |  |  | no; he needs 20.17 more |  |

Q22.

| Question | Working | Answer | Mark | Notes |
| :--- | :---: | :---: | :---: | :--- |
|  |  | $6(\%)$ | P1 | for $y^{5}$ oe or $8029.35 \div 6000$ |
|  |  |  | P1 | for a process to find $1+x$ e.g. $\sqrt[5]{(8029.35 \div 6000)}$ |
|  |  | A1 | or 1.06 or $1.0599 .$. |  |
|  |  |  | 5.99 to 6 |  |

Q23.

| Paper 1MA1: 2H |  |  |  |
| :---: | :---: | :---: | :---: |
| Question | Working | Answer | Notes |
| (a) |  | 1.8\% | P1 for start to process eg. $2000 \times 1.025(=2050)$ <br> P1 for process to use all given information eg. " 2050 " $\times m^{2}=2124.46$ $\text { or " } 2050 \text { " } \times\left(1+\frac{x}{100}\right)^{2}=2124.46$ <br> P1 for process to find their unknown eg $m=\sqrt{\frac{2124.46}{2050}}(=1.01799 \ldots)$ <br> A1 for $1.79 \%-1.8 \%$ <br> M1 $225 \div 1.125$ oe <br> A1 |

Q24.

| Question | Working | Answer | Mark | Notes |
| ---: | :---: | :---: | :---: | :--- |
| (a) |  | 58600 | M1 | for a complete method, eg $50000 \times 1.02^{8}(=$ <br> $58582(.969 \ldots))$ <br> or for finding the increase in value of the company after <br> 8 years, <br> eg $8582(.969 \ldots)$ or 8600 |
| (b) | 4.5 | P1 | A1 <br> cao <br> for a process to find multiplier for 6 year period, eg 325 <br> $\div 250$ oe $(=1.3)$ or $130(\%)$ <br> or for $250000 \times y^{6}=325000$ |  |
| A1 |  | P1 <br> for a process to find multiplier for one year, eg ("1.3") <br> or $1.044 \ldots .$. or 1.045 <br> $4.4-4.5$ |  |  |

Q25.


Q26.

| Question | Answer | Mark | Mark scheme | Additional guidance |
| :--- | :---: | :--- | :--- | :--- |
|  | 2.2 | P1 | works out interest for one year, eg $3550 \times 0.026$ <br> $(=92.3(0))$ <br> or $3550 \times 1.026(=3642.3(0))$ <br> for compound interest calculation, eg $3550 \times$ <br> $1.026^{2}(=3736 . \ldots)$ <br> or for an answer given as $0.0219 \ldots$ or $1.0219 \ldots$ <br> answer in range 2.19 to 2.2 | If an answer in the range is <br> seen in working and then <br> incorrectly rounded award <br> full marks |

Q27.

| Paper 1MA1: 3H |  |  |  |
| :---: | :--- | :--- | :--- |
| Question | Working | Answer | Notes |
| (a) |  | 2500 | P1 for use of 1.03 <br> P1 for a full method equivalent to $\div 1.03^{2}$ <br> A1 2500 |
| (b) |  | Saver <br> account | P1 process to find a comparable total interest figure <br> A1 for conclusion with supporting statement eg <br> $21 .(665 .)>21$. |
| with |  |  |  |
| support |  |  |  |$\quad$|  |
| :--- |

Q28.

| Question | Working | Answer |  | Notes |
| :---: | :---: | :---: | :--- | :--- |
| (a) | $1560000 \times(1.052)^{2}$ | 1730000 | P1 for process to find population in 2016 <br> for complete process to find <br> population in 2017 <br> (b)(i) 2020 | P1for 1725000-1730000 <br> for process to find when population <br> will exceed 2 000 000 <br> for 2020 |
| (ii) |  | A1C1 for correct comment on how <br> assumption will affect the answer, eg <br> if the percentage growth is higher the <br> population may exceed 2 000 000 <br> earlier. |  |  |

Q29.

| Question | Working | Answer | Mark | Notes |
| :---: | :---: | :---: | :---: | :--- |
| (a) |  | $6.66 \times 10^{7}$ | M1 | for $6.5 \times 10^{7} \times 1.006^{4}$ |
| for $6.66 \times 10^{7}$ or $6.657(\ldots) \times 10^{7}$ |  |  |  |  |
| (b) |  | explanation | C1 | for explanation, e.g. growth is compound not simple <br> oe, increase in population changes each year oe |
| (c) |  | Correct <br> argument | M1 | for method to find the common ratio, e.g. finds <br> population in 3 successive yrs or 1.006 <br> for convincing conclusion, e.g. terms are generated by <br> multiplying previous term by 1.006 so a geometric <br> progression is formed |

Q30.

| Paper 1MA1: 2F |  |  |  |
| :---: | :--- | :--- | :--- |
| Question | Working | Answer | Notes |
|  |  | Jardins of <br> Paris | P1 |
|  |  | correct process to convert one <br> price to another currency, eg <br> 1980 $\div 1.34$ |  |
|  |  |  | P1for a complete process <br> leading to 3 prices in the <br> same currency |
|  |  |  | C1for 3 correct and consistent <br> results and a correct <br> comparison made. |

Q31.

| Paper 1MA1: 2H |  |  |  |
| :---: | :--- | :--- | :--- |
| Question | Working | Answer | Notes |
|  |  | Jardins of Paris | P1correct process to convert <br> one price to another <br> currecncy, eg $1980 \div$ <br> 1.34 <br> for a complete process <br> leading to 3 prices in the <br> same currency <br> for 3 correct and <br> consistent results and a <br> correct comparison <br> made. |
|  |  |  | P1 |
|  |  |  |  |

Q32.

| Question | Working | Answer | Mark | Notes |
| :---: | :---: | :---: | :---: | :---: |
| 2 |  | New York (supported) | P1 | for changing between $£$ and $\$$, eg $1.089 \times 1.46(=1.58(9)$.$) or 2.83 \div 1.46(=$ 1.93(8.)) or between litres and gallons, eg $1.089 \times 3.785(=4.12(1)$.$) or 2.83 \div 3.785(=$ 0.74(7.)) |
|  |  |  | P1 | for a complete process to give values that can be used for comparison, $\begin{aligned} & \text { eg "1.938 } \ldots \div 3.785(=0.51(2 .)) \text { or } \\ & \text { " } 1.589 \ldots . \ldots 3.785(=6.01(7 .)) \\ & \text { or } 1.089 \times 3.785=(4.12(1 .)) \text { and } 2.83 \div \\ & 1.46(=1.93(8 .)) \end{aligned}$ |
|  |  |  | C1 | for New York and correct comparative values |

Q33.

| Question | Working | Answer | Mark | Notes |
| :---: | :---: | :---: | :---: | :---: |
| (a) | UK $£ 98$, USA $£ 94.40$, Germany $£ 102.19$ <br> UK $\$ 140.14$, USA $\$ 134.99$ <br> Germany \$146.14 <br> UK $€ 134.25$, USA $€ 129.31$ <br> Germany $€ 139.99$ | USA <br> with reasons | 3 | P1 process to find price to compare for USA, $\text { e.g. } 134.99 \div 1.43(=94.40)$ <br> P1 process to find price to compare for Germany, $\text { e.g. } 139.99 \times 0.73(=102.19)$ <br> A1 correct conclusion with correct figures in consistent currencies to compare e.g. (£)94.40, (£)102.19, (f) 98 |
| (b) |  | Explanation | 1 | C1 reason, e.g. reference to postage costs or travel |

Q34.

| Question |  | rking | Answer | Mark | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: |
| (a) |  | £ | 2975.79 | P1 | for process to find total room cost eg $196 \times 14$ (= 2744) |
|  |  | 2.631... |  | P1 | for process to find total wifi cost eg $5 \times 12(=60)$ |
|  | $\begin{aligned} & 60 \\ & 196 \\ & 2744 \\ & 2804 \end{aligned}$ | $\begin{aligned} & 31.578 \ldots \\ & 103.157 \ldots \\ & 1444.21 \ldots \\ & 1475.789 . \end{aligned}$ |  | P1 | for using exchange rate appropriately (could be used earlier in the question), <br> eg " 2804 " $\div 1.90(=(£) 1475.789 \ldots$ ) or $1500 \times 1.90(=$ (\$)2850) |
|  |  |  |  | P1 | for process to find the total cost in $£$, eg "1475.79(..)" $+1500$ <br> or in \$, eg " 2850 " + " $2804 "(=5654)$ |
|  |  |  |  | A1 | 2975 to 2976 |
| (b) |  |  | Statement | C1 | Statement about the total price rising <br> May comment that flights will not change but the rest will rise |

Q35.

| Question | Answer | Mark | Mark scheme | Additional guidance |
| ---: | :---: | :--- | :--- | :--- |
| (a) | 75 to 81 | B2 | for answer in the range 75 to 81 |  |
| (b) |  | (B1 | for 60 or 100 or 6000 or 6400 or $\sqrt{64 \times 100})$ |  |
| (c) | $\frac{1}{25}$ | B1 | for $\frac{1}{25}$ or 0.04 | Can use standard form |
| B1 | for 0.000148 oe |  |  |  |

Q36.

| Question | Answer | Mark | Mark scheme | Additional guidance |
| :---: | :---: | :---: | :---: | :---: |
|  | 8 | P1 | for working with volume of the cuboid, eg 30 $\times 6 \times 19(=3420)$ <br> OR for using $\frac{2}{3}$ with one dimension, eg $30 \times 2 \div 3(=20)$ | For P marks, ignore attempts at unit conversion |
|  |  | P1 | $\begin{aligned} & \text { for " } 3420 " \times 2 \div 3(=2280) \text { or } \\ & " 3420 " \div 3(=1140) \\ & \text { OR " } 20 " \times 6 \times 19(=2280) \\ & \text { OR " } 3420 " \div 275(=12.4 \ldots=12 \text { cups }) \end{aligned}$ |  |
|  |  | P1 | $\begin{aligned} & \text { (dep on P2) for " } 2280 " \div 275(=8(.29 \ldots)) \text { or } \\ & \text { " } 1140 " \div 275(=4(.14 \ldots)) \\ & \text { OR " } 12 \text { " } \times 2 \div 3 \\ & \text { OR for } 275 \times 8(=2200) \text { or } 275 \times 9(=2475) \end{aligned}$ |  |
|  |  | A1 | cao |  |

Q37.

| Question | Answer | Mark | Mark scheme | Additional guidance |
| ---: | :---: | :--- | :--- | :--- |
| (a) | 7360 | B1 | cao | Answer must be given to at <br> least 4 decimal places rounded <br> or truncated |
| (b) | 0.1077981356 | B2 | for $0.1077(981 \ldots)$ | Accept a clear indication of the <br> decimal point. <br> Check first four decimal places <br> only |

Q38.

| Question | Answer | Mark | Mark scheme | Additional guidance |
| :---: | :--- | :--- | :--- | :--- |
| (a) | $3.0 \times 10^{9}$ | P1 | for correct process, eg $10^{5} \times 365 \times 81$ <br> or for a correct answer not written in standard <br> form, <br> eg 2956500000 or $2.9(565) \times 10^{n}$ where $n \neq 9$ <br> oe | Values may be rounded. <br> Allow $350,360,366,370,400$ <br> and 80,100 |
| (b) | $4.5 \times 10^{-11}$ | P1 | A1 <br> for an answer in the range <br> $2.8 \times 10^{9}$ to $4.0 \times 10^{9}$ |  |
| for correct process, eg $\frac{90}{2 \times 10^{12}}$ |  |  |  |  |
| or for correct answer not written in standard |  |  |  |  |
| form, |  |  |  |  |
| eg $45 \times 10^{-12}$ or $0.45 \times 10^{-10}$ |  |  |  |  |
| or $4.5 \times 10^{n}$ where $n \neq-11$ |  |  |  |  |
| cao |  |  |  |  |$\quad$ A1 |  |
| :--- |

Q39.

| Paper 1MA1: 1F |  |  |  |  |
| :---: | :---: | :---: | :--- | :--- |
| Question | Working | Answer |  | Notes |
| (a) |  | 2000 | P1 | Evidence of estimate eg. 400 or 20 used in calculation |
| (b) |  | P1 | complete process to solve problem |  |
| Overestimate |  |  |  |  |
| with reason |  |  |  |  | C1 | A1 from (a) eg. overestimate as two numbers rounded up |
| :---: | :---: |

## Q40.

| Question |  | Working | Answer | Mark | Notes |
| :--- | :--- | :---: | :---: | :---: | :--- |
| (a) |  | 39 | 3 | P1 for rounding one dimension correctly <br> P1 for $(2 \times 2)+(5 \times 7)$ with at least three of 2, 2, <br> 5,7 used <br> A1 cao |  |
| (b) |  | Justified <br> answer | 1 | C1 ft (dep on P1) underestimate with explanation |  |

Q41.

| Paper 1MA1: 1F |  |  |  |  |
| :---: | :---: | :---: | :--- | :--- |
| Question | Working | Answer | Notes |  |
| (a) |  | $2000 \mathrm{p}-$ <br> 2600 p | P1 | Evidence of estimate eg. 4 or 50 <br> used in calculation <br> complete process to solve problem |
| (b) |  | P1 | A1 | $2000 \mathrm{p}-2600 \mathrm{p}$ or $£ 20-£ 26$ |
| under | C1 | underestimate as values have been <br> rounded down |  |  |

Q42.

| Question | Working | Answer | Mark | Notes |
| :---: | :---: | :---: | :---: | :--- |
| (a) |  | 3.5 to 4.5 | M1 | substitution into formula $\frac{1}{3} \pi r^{2} h$ of chosen values for $r$ <br> and $V$ (accept $r=5.13$ and $V=98$ ) <br> and starts rearrangement e.g. multiplies by 3, divides by $\pi$ <br> or divides by $r^{2}$ (both sides) |
| (b) |  | M1 | uses estimates in calculation e.g. $\frac{3 \times 100}{3 \times 25}$ (or in rearranged <br> formula) or $\frac{12}{\pi}$ |  |
| A1 | arrives at a single value from estimate in the range 3.5 to <br> 4.5 <br> ft e.g. more since number in numerator goes up; numbers <br> in denominator go down. |  |  |  |

Q43

| Question | Answer | Mark | Mark scheme | Addlitional guidance |
| :---: | :---: | :---: | :---: | :---: |
|  | Estimated value | P1 | for using a rounded value in a correct process <br> eg $3000 \div 15$ or $15 \times 8$ or $20 \times 8$ | Their rounded value must be used in a calculation <br> Rounding may appear after a correct process eg $15.12 \times 8=120.96 \approx$ 100 followed by eg $3069.25 \div$ 100 |
|  |  | P1 | for a full process to find the number of days $\text { eg " } 3000 " \div " 15 " \div " 10 "(=20) \text { or }$ $" 3000 " \div " 15 " \div 8(=25)$ | Accept $3069.25 \div 15.12 \div$ 8 oe |
|  |  | A1 | for a correct answer following through their rounded values |  |
| (b) | Explanation | C1 | eg less days required or it doesn't affect the answer because I would still round 16.27 down to 15 (or up to 20) | Refers to time taken |

Q44.

| Question |  | Working | Answer | Mark | Notes |
| :--- | :---: | :---: | :---: | :---: | :--- |
|  |  | 2000 | 3 | B1 for correctly rounding two of the three values <br> $(40,100,0.2)$ <br> M1 for partially completing the calculation, <br> e.g. $(40 \times 10) \div 0.2,400 \div 0.2$ <br> A1 cao |  |

Q45.

| Question | Answer | Mark | Mark scheme | Additional guidance |
| :---: | :---: | :---: | :---: | :---: |
|  | 3240 | P1 | $\begin{aligned} & \text { for } 90 \times 60(=5400) \\ & \text { OR } 40 \div 100 \times 90(=36) \\ & \text { OR } 40 \div 100 \times 60(=24) \end{aligned}$ |  |
|  |  | P1 | for a process to work out area that is flowers eg. $40 \div 100 \times$ " 5400 " $(=2160)$ <br> OR " 36 " $\times 60(=2160)$ <br> OR $90 \times " 24 "(=2160)$ |  |
|  |  | P1 | for a full process to find the area that is grass eg. " 5400 " - " 2160 " ( $=3240$ ) |  |
|  |  | A1 | cao |  |
|  |  | P1 | ALTERNATIVE for $100-40(=60)$ |  |
|  |  | P1 | (indep) for $90 \times 60(=5400)$ <br> OR $90 \times 60 \div 100(=54)$ or $60 \times 60 \div 100(=36)$ |  |
|  |  | P1 | for a full process to find the area that is grass eg. " 60 " $\div 100 \times$ " 5400 " $(=3240)$ <br> OR " 54 " $\times 60(=3240)$ or " $36 " \times 90(=3240)$ |  |
|  |  | A1 | cao |  |

Q46.

| Question |  | Working | Answer | Mark | Notes |
| :--- | :--- | :---: | :---: | :---: | :--- |
|  |  | $13 \mathrm{~m}^{2}$ | 5 | P1 process to find $F E(28-6-6) \div 2(=8)$ <br> or $A B(28-6-6-3-3) \div 2(=5)$ <br> P1 process to find area of a triangle <br> $\frac{4 \times 8}{2}(=16)$ or $\frac{6 \times 3}{2}(=9)$ or $\frac{5 \times 4}{2}(=10)$ or $\frac{2 \times 3}{2}(=3)$ <br> P 1 complete process for shaded area <br> e.g. $8 \times 4+2 \times 3-(" 16 "+" 9 ")$ <br> or $\frac{5 \times 4}{2}+\frac{2 \times 3}{2}$ <br> A1 cao <br> C 1 (indep) for $\mathrm{m}^{2}$ |  |

Q47.

| Question | Answer | Mark | Mark scheme | Additional guidance |
| :---: | :---: | :---: | :---: | :---: |
| (a) | $\begin{gathered} \text { Yes } \\ \text { (supported) } \end{gathered}$ | P1 | $\begin{aligned} & \text { for start of process, } \\ & \text { eg } 5 \times 9(=45) \text { or } 10 \times 14(=140) \\ & \text { or } 5 \times 2(=10(\mathrm{~kg})) \\ & \text { or } 3 \div 2(=1.5(\text { boxes })) \end{aligned}$ | Accept values rounded or truncated to 1 dp in both (a) and (b). <br> Ignore units |
|  |  | P1 | for process using ratio of areas, eg "140" $\div$ " 45 " (= $=3.1$...) or for using ratio of amount of seed eg " 10 " $\div 3$ (= $=3.3 \ldots$ ) or for finding coverage for 1 kg of grass seed, eg " 45 " $\div 3\left(=15\left(\mathrm{~m}^{2}\right)\right.$ ) |  |
|  |  | P1 | for process to find amount of seed needed, eg " 140 " $\div 45$ " $\times 3(=9.3 \mathrm{~kg})$ <br> or " 140 " $\div$ " 45 " $\times$ " 1.5 " ( $=4.6$...(boxes)) oe or " 15 " $\times 2$ ( $=30$ ( $\mathrm{m}^{2}$ per box $)$ ) <br> and " 140 " $\div 30$ " $(=4.6$ (boxes) $)$ <br> or for process to find area that can be seeded, <br> eg " 10 " $\div 3 \times$ " 45 " ( $=150\left(\mathrm{~m}^{2}\right)$ ) <br> or " 140 " $\div$ " 10 " ( $=14\left(\mathrm{~m}^{2}\right)$ ) oe | Accept 9.4 Accept 4.7 |
|  |  | C1 | for "Yes" supported by correct figures eg 4.6...(and 5), or 9.3 and 10 or 150 and 140 (or 140 to 148.5 ) or 15 and 14 |  |
| (b) | Yes, <br> (does not have enough) (supported) | C1 | for reasoning supported with correct figures, eg does not have enough seed and compares $9(\mathrm{~kg})$ with $9.3 \ldots(\mathrm{~kg})$ or 4.5 (boxes) with $4.6 \ldots$ (boxes) or $135\left(\mathrm{~m}^{2}\right)$ with $140\left(\mathrm{~m}^{2}\right) \mathrm{ft}$ from (a) | Values used in (a) do not need repeating in (b) as long as intention is clear |

Q48.

| Question | Answer | Mark | Mark scheme | Additional guidance |
| :---: | :---: | :---: | :---: | :---: |
|  | Accurate figures with supportive working | M1 | $\begin{aligned} & \text { for a correct first step eg } 600 \div 30(=20) \text { or } \\ & 120 \div 30(=4) \text { or } 600 \times 120(=72000) \text { or } 30 \\ & \times 30(=900) \end{aligned}$ | Could work in m or cm |
|  |  | M1 | for finding an appropriate cost $2.5 \times$ " 20 " $(=50)$ or $2.5 \times$ " 4 " ( $=10$ ) <br> OR number of tiles required " 72000 " " 900 " ( $=80$ ) or "4" ×" 20 " (=80) <br> OR number they can afford $220 \div 2.5$ $(=88)$ | Units must be consistent |
|  |  | M1 | for full method to get figures to compare eg cost to tile whole area eg " 80 " $\times 2.5$ OR number of tiles they need and number they can afford eg " 72000 " $\div 900$ " and $220 \div 2.5$ |  |
|  |  | A1 | for 200 <br> OR 80 and 88 <br> OR 72000 and 79200 <br> OR $132(\mathrm{~cm})$ <br> OR $660(\mathrm{~cm})$ |  |
|  |  |  | SC B2 for answer of 60 |  |

Q49

| Paper 1MA1: 2F |  |  |  |
| :---: | :---: | :---: | :--- | :--- |
| Question | Working | Answer | Notes |
|  |  | 66.9 | P1for process to find the area <br> of one shape, eg. $19 \times 16(=$ <br> $304)$ or $\pi \times 8^{2}(=201.06 \ldots)$ <br> for process to find the <br> shaded area, eg. "304"- <br> "201.06" $\div 2(=203.46 \ldots)$ <br> for a complete process to <br> find required percentage, eg. <br> "203.46" |
| 10400 |  |  |  |

Q50.

| Question | Working | Answer | Mark | Notes |
| :---: | :---: | :---: | :---: | :--- |
|  | 8600 | P1 | for process to find the length of the rectangle, e.g. $24 \times$ <br> $4(=96)$ <br> for process to find the perpendicular height of an <br> equilateral triangle of <br> side $(24 \times 2) \mathrm{cm}$, e.g. $48 \sin 60(=41.5(69 .)$.$) or$ <br> $\sqrt{48^{2}-24^{2}}(=24 \sqrt{3}$ oe $)$ <br> for complete process to find the width of rectangle, <br> e.g. "41.5(69..)" $+24+24(=89.5(69 .))$. <br> for answer in the range 8592 to 8602 |  |

Q51.

| Paper 1MA1: 1F |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Question | Working | Answer | Notes |
|  | Correct <br> diagram with <br> layout and <br> lengths | M1 for changing to consistent units eg. $1000 \div 10$ or $40 \times 10$ |  |
| M1for interpreting information and a process to fit tiles <br> in floor area eg. may be seen in a sketch or a calculation <br> for a diagram to communicate a correct layout with <br> lengths clearly identified |  |  |  |

Q52.

| Question | Working | Answer | Mark | Notes |
| :---: | :---: | :---: | :---: | :--- |
| (a) |  | 4 | P1 | $\begin{array}{l}\text { for process to find area of at least } 2 \text { different faces, } \\ \text { e.g. } 95 \times 18 \text { and } 80 \times 18\end{array}$ |
| for a complete process to find the surface area of one |  |  |  |  |
| cushion, |  |  |  |  |
| e.g. ( $95 \times 18+80 \times 18+95 \times 80) \times 2$ |  |  |  |  |
| for process to convert units, e.g. $80 \div 100(=0.8)$ |  |  |  |  |$]$| P1 |
| :--- |

Q53.

| Paper 1MA1: 1H |  |  |  |
| :--- | :---: | :---: | :---: |
| Question | Working | Answer | Notes |
|  |  | $75 \pi$ | P1starts process by using $\frac{250}{3} \pi$ <br>  |
|  |  | P1and $\frac{1}{2} \times \frac{4}{3} \pi r^{3}$ to find radius as 5 process using $1 / 2$ curved <br> surface area eg $\left(4 \times \pi \times 5^{2}\right) \div 2$ <br> complete process shown eg $(4$ <br> $\left.\times \pi \times 5^{2}\right) \div 2+\left(\pi \times 5^{2}\right)$ <br> for $75 \pi$ |  |

Q54.

| Paper 1MA1: 3H |  | Answer | Notes |
| :---: | :---: | :---: | :---: |
| Question | Working |  |  |
|  | $\begin{aligned} & A C^{2}=20^{2}+20^{2}=800 \\ & A X^{2}=10^{2}+10^{2}=200 \\ & \sqrt{200} \times \tan 55=V X \quad(=20.19 \ldots) \\ & V M^{2}=\sqrt{\prime \prime 20.19^{\prime 2}+10^{2}} \quad(=22.54 \ldots) \\ & 4 \times \frac{1}{2} \times " 22.54 " \times 20+20^{2} \end{aligned}$ | 1300 | Let $X$ be centre of base, $M$ be midpoint of $A B$ <br> P1 process to find $A C$ or $A X$ <br> P1 process to find $V X$ or $V A$ <br> P1 process to find height of sloping face or angle of sloping face. <br> P1 process to find surface area of one triangular face. <br> A1 For $1300-1302$ |

Q55.

| Question | Answer | Mark | Mark scheme | Additional guidance |
| :---: | :---: | :---: | :---: | :---: |
|  | 280 | P1 | for starting to use Pythagoras to find the missing side <br> eg $8.4^{2}-7.2^{2}(=18.72)$ | Award P1 for a correct Pythagorean statement eg $x^{2}+7.2^{2}=8.4^{2}$ |
|  |  | P1 | for a complete process to find the missing side $\text { eg } \sqrt{70.56-51.84} \text { or } \sqrt{18.72}(=4.32 \ldots)$ | 4.3 truncated or rounded can imply P2 |
|  |  | P1 | (dep P1) for a process to find the area of the triangular face eg [length of base] $\times 7.2) \div 2(=15.57 .$. OR the volume of the cuboid eg [length of base] $\times 7.2 \times 18(=560.7 .$. | Uses a figure they show as the length of the base of the right angled triangle but dep on P1 Allow 15.57.. truncated or rounded if unsupported |
|  |  | P1 | for a complete process to find the volume of the prism <br> eg "15.5.." $\times 18$ or " $560.7 .$. " $\div 2$ |  |
|  |  | A1 | answer in the range 278-281 | If an answer is given in the range 278 to 281 but then incorrectly given to 3 sig fig this mark can still be awarded. |

Q56.

| Paper 1MA1: 1F |  | Answer | Notes |  |
| :---: | :---: | :---: | :---: | :---: |
| Question | Working |  |  |  |
|  |  | explanation | M1 works with <br> volume eg <br> M1 240000 <br> uses <br> conversion 1 <br>  litre $=1000$ <br> cm $^{3}$ <br> M1 uses 8000 eg <br>  vol $\div 8000$ <br> $(=30)$ <br> M1 uses "30" eg <br> "30" $\times 2.50$ <br> C1 for <br> explanation <br> and 75 stated | ```begins working back eg \(70 \div 2.50\) uses conversion 1 litre \(=1000\) \(\mathrm{cm}^{3}\) uses 8000 eg " 28 " \(\times 8000\) (=224000) works with vol. eg 224000 for explanation with 240000 and 224000``` |

Q57.

| Paper 1MA1: 2F |  | Answer | Notes |
| :---: | :---: | :---: | :---: |
| Question | Working |  |  |
|  |  | 13.9 | P1 finds the volume of a cuboid eg. $50 \times 40 \times 60(=120000)$ |
|  |  |  | P1 finds $35 \%$ of the oil from the cuboid eg. 120000 $\times 0.35 \text { oe }(=42000)$ |
|  |  |  | P1 removes $35 \%$ of oil from cuboid eg. $120000-42000$ (=78000) |
|  |  |  | P1 division to find missing side length eg. $78000 \div(80 \times 70)$ or 13.928... |
|  |  |  | A1 for answer to an appropriate degree of accuracy eg. ( 13.9 or 14 or 10 ) |

Q58.

| Question | Answer | Mark | Mark scheme | Additional guidance |
| :--- | :--- | :--- | :--- | :--- |
| 155 | M1 | for a complete method to find the volume of the <br> hemisphere, <br> eg $\frac{1}{2} \times \frac{4}{3} \times \pi \times 4.2^{3}$ oe <br> answer in range 155 to 155.2 | If an answer in the range is <br> seen in working and then <br> incorrectly rounded award <br> full marks |  |

Q59.

| Question | Answer | Mark | Mark scheme | Additional guidance |
| :--- | :--- | :--- | :--- | :--- |
|  | $600 \mathrm{~cm}^{3}$ | M1 | for a complete method to find <br> the volume eg $4 \times 10 \times 15$ | If extra steps are shown do not award this <br> mark |
|  |  | A1 | for 600 | Ignore incorrect or absent units for this <br> mark |
| B1 | (indep) $\mathrm{cm}^{3}$ | Ignore incorrect or absent numerical answer <br> for this mark |  |  |

Q60.

| Question | Working | Answer | Mark | Notes |
| :--- | :---: | :---: | :---: | :--- |
|  |  |  |  | P1 |

Q61.

| Paper 1MA1: 2F |  |  |  |
| :---: | :---: | :---: | :---: | :--- |
| Question | Working | Answer | Notes |
|  |  | 13 | M1Puts numbers in order or clear attempt to find 5th <br> number or <br> $(9+1) / 2$ or selects 11 |

Q62.

| Question | Working | Answer | Mark | Notes |
| :---: | :---: | :---: | :---: | :--- |
| (a) | 12 | B1 | cao |  |
| (b) |  | Explanation | C1 | No with statement about not being mutually <br> exclusive events eg a person could be in both <br> categories |

Q63.

| Question |  | Working | Answer | Mark | Notes |
| :--- | :--- | :---: | :---: | :---: | :--- |
|  | (a) |  | 7 | 1 | B1 cao |
| (b) | 3 | 2 | M1 for listing the numbers in order and identifying the <br> middle two numbers as 3 or answer of 4.5 <br> A1 cao |  |  |

Q64.

| Question | Working | Answer | Notes |
| :---: | :---: | :---: | :--- | :--- |
| (a) |  | No and reason | C1No and reason eg the mean <br> must be less than 6 |
| (b) | explanation | C1Should have divided by 30, <br> not by 6 |  |

Q65.

| Question | Working | Answer | Mark | Notes |
| ---: | :---: | :---: | :---: | :--- |
| (a) |  | 10 | P1 | for process to find total scores of either women, <br> $15.6 \times 10(=156)$ <br> or children $9.2 \times 10(=92)$ or all $11.2 \times 40(=448)$ <br> for complete process to find average score of men, e.g. <br> $(" 448 "-" 156 "-" 92 ") \div 20$ <br> cao |
| (b) |  | M1 <br> Mean is <br> reduced | C1 | The mean is reduced (since the total is reduced) |

Q66.

| Question | Answer | Mark | Mark scheme | Additional guidance |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 18.6 | M1 | for finding 4 products within intervals (including end points) | $\operatorname{Min} f x$ | Max $f x$ |
|  |  |  |  | 5 | 10 |
|  |  |  |  | 20 | 30 |
|  |  |  |  | 105 | 140 |
|  |  |  |  | 160 | 200 |
|  |  | M1 | $\begin{aligned} & \text { for } \sum " f x " \div(1+2+7+8) \\ & \text { or }(7.5 \times 1+12.5 \times 2+17.5 \times 7+22.5 \times 8) \div \\ & (1+2+7+8) \\ & \text { or }(" 7.5 "+" 25 \text { " }+122.5 "+" 180 ") \div \text { " } 18 \text { " } \\ & \text { or " } 335 " \div " 18 \text { " } \end{aligned}$ | $\Sigma " f x "$ must co products $f x$ wi (including end | from 4 in intervals oints) |
|  |  | A1 | for $18.6(111 \ldots)$ |  |  |

Q67.

| Question | Answer | Mark | Mark scheme | Additional guidance |
| :---: | :---: | :---: | :---: | :---: |
|  | 16.5 | M1 <br> M1 <br> A1 | for method to find total of ages of boys, eg $18 \times 16.2(=291.6)$ <br> or total of ages of girls, eg $27 \times 16.7(=450.9)$ or total of ages of boys and girls, eg 742.5 <br> for complete method, eg $\frac{" 291.6 "+" 450.9 "}{45}$ $\left(=\frac{742.5}{45}\right)$ <br> cao | May use an equivalent method with number of boys and girls used in the ratio $2: 3$ <br> $\frac{16.2+16.7}{2}$ scores 0 marks |

Q68.

| Question | Answer | Mark | Mark scheme | Additional guidance |
| ---: | :---: | :--- | :--- | :--- |
| (a) | $59,53,66$ | B2 | for Median $=59, \mathrm{LQ}=53, \mathrm{UQ}=66$, may be seen <br> in working <br> for one correct) | (B1 |


| (c) | No, with reason | C1 | for No and comment comparing spreads of ages from ranges or IQRs , ft from (a) <br> Acceptable examples <br> $38<43$ or " 13 " $<19$ <br> Greater difference between greatest and least age for coach B <br> Range for coach B is larger than coach A <br> The range of ages is wider on coach $B$ than on coach $A$ <br> The range is 5 greater on coach B <br> There is a smaller difference between the lower and upper quantiles on coach A than on coach B The IQR is shorter for coach A <br> Not acceptable examples <br> Quartiles are less for coach A <br> $53<54$ or $79<85$ (oe) <br> Range for coach A is 38 and range for coach B is 43 Coach $A$ ranges from $41-79$ but coach $B$ ranges from 42-85 | Working <br> A: Range $=38, \mathrm{IQR}=" 13$ " <br> B: Range $=43, \mathrm{IQR}=19$ |
| :---: | :---: | :---: | :---: | :---: |

Q69.

| Question | Answer | Mark | Mark scheme | Additional guidance |
| :---: | :---: | :---: | :---: | :---: |
| (a) | cf graph through $(40$, $5),(60,25)$, $(80,35)$, $(100,38)$ and $(120,40)$ | C2 | for a complete and accurate ef graph | May be a cumulative frequency curve or a cumulative frequency polygon Ignore any graph drawn to the left of the first point If histograms drawn, plots must be identified |
|  |  | (C1 | for at least 4 or 5 cf values plotted correctly) <br> SC: B1 for 4 or 5 points plotted not at end but consistently within each interval and joined provided no gradient is negative |  |
| (b) | answer in range 21 to 28 | M1 | for UQ in the range 66 to 70 or LQ in the range 42 to 46 or ft their cf graph |  |
|  |  | A1 | for answer in range 21 to 28 or ft their of graph |  |
| (c) | answer in the <br> range $\frac{19}{40}$ to $\frac{24}{40}$ | M1 | for finding the difference between readings taken from the cf axis at points from a mark of 50 and a mark of 90 or ft their graph (if possible) | Their graph must be a cf graph |
|  |  | A1 | for an answer in the range $\frac{19}{40}$ to $\frac{24}{40}$ or ft their cf graph | Accept any equivalent fraction, decimal from 0.475 to 0.6 or percentage from 47.5\%-60\% |

(a)


Q70.

| Question | Answer | Mark |  | Mark scheme | Additional guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| (a) | 5,15,35,55,70,80 | B1 | cao |  |  |
| (b) | Graph drawn | M1 | for 5 or 6 of their points plotted correctly from a cf table |  | Ignore to the left of the first point and |
|  |  | A1 | for a fully correct graph SC B1 if 5 or 6 of their points plotted not at end but consistent within each interval | splotted not at end terval segments tive | right of the last point If histograms drawn, points must be identified <br> Accept a smooth curve or line segments ft from a cum freq graph |
| (c) | Correct decision and correct figures | M1 | for $60 \div 100 \times 80(=48)$ oe | reading value from graph at wage $=360$ $(=40)$ or for $35+\frac{1}{5} \times 20(=39)$ |  |
|  |  | M1 | reading value from graph at $\mathrm{cf}=48(=380)$ | $\begin{aligned} & \text { for " } 40 \text { " } \div 80 \times 100 \\ & (=50(\%)) \\ & \text { or for } 60 \div 100 \times 80 \\ & (=48) \end{aligned}$ |  |
|  |  | C1 | ft for correct decision and c eg No with 48 and " 380 " or or with " 40 " and 48 | rrect figures, <br> with " 40 " and " 50 "(\%) |  |

Q71.

| Question |  | Working | Answer | Mark | Notes |
| :--- | :--- | :---: | :---: | :---: | :--- |
|  | (a) |  | Correct graph | B1 | for 5 or 6 points plotted correctly <br> B1 <br> for their points joined by a curve or line <br> segments provided no gradient is negative. |
|  | (b) |  | 43 | B1 | Answer in the range 41 to 45 |

Q72.

| Question |  | Working | Answer | Mark | Notes |
| :--- | :--- | :--- | :---: | :---: | :--- |
|  |  | A \& Y | 2 | B2 for all correct |  |
|  |  |  | B \& X |  | (B1) for two or three correct |
|  |  | C \& Z |  |  |  |
|  |  | D \& W |  |  |  |
|  |  |  |  |  |  |

Q73.

| Question | Working | Answer | Mark | Notes |
| ---: | :---: | :---: | :---: | :--- |
| (a)(i) |  | Box plot <br> drawn | B1 | for a box drawn with at least two correct values from: <br> LQ $=23$, Median $=28$, UQ $=32.5$ |
| (a)(ii) |  | $\frac{10}{25}$ | M1 | Bor $\frac{a}{25}$ where $a<25$ or $\frac{10}{b}$ where $10<b \leq 25$ <br> shown on the grid <br> for a fully correct diagram |
| (b) |  | A1 | for $\frac{10}{25}$ oe |  |

Q74.

| Question | Answer | Mark | Mark scheme | Additional guidance |
| :---: | :---: | :---: | :---: | :---: |
| (a) | Explanation | C1 | eg 'No' the median is 57 |  |
| (b) | Comparison | C1 | (ft) a correct comparison of medians eg the median weight for Megan was greater than the median weight for Amy | Simply quoting values for median, range and IQR is insufficient, they must be compared |
|  |  | C1 | a correct comparison of a measure of spread eg | Median Range IQR |
|  |  |  | the interquartile range of weights for Megan was | $\begin{array}{llll}\text { Megan } & 57 & 49 & 26\end{array}$ |
|  |  |  | greater than the interquartile range of weights for | $\begin{array}{llll}\text { Amy } & 42 & 47 & 16\end{array}$ |
|  |  |  | For the award of both marks at least one of the comparisons must be in the context of the | Figures given must be correct. |
|  |  |  | question | Comparisons can relate to the range or the IQR |

Q75.

| Question | Answer | Mark | Mark scheme | Additional guidance |
| :--- | :--- | :--- | :--- | :--- |
|  | Two <br> changes | C1 | C1 | plot the median at 162, not 161 oe <br> plot the upper quartile at 171, not 172 oe <br> Acceptable examples <br> the median has been plotted at $161 /$ upper quartile at <br> 172 <br> the upper quartile should be 171 (not 172 ) <br> UQ is wrong as IQR is 17 not 18 <br> Not <br> the median/ uppexamples quartile have been plotted / drawn <br> wrong <br> the upper quartile has been worked out incorrectly <br> She needs to work out the UQ |

Q76.

| Question | Answer | Mark | Mark scheme | Additional guidance |
| :---: | :---: | :---: | :---: | :---: |
| (a) | box plot drawn | B1 | ends of whiskers at 0 and 42 with a box | The box can be of any height. Accept ends that are marked (eg line, cross, dot) or defined by the end of the whiskers if clear. |
|  |  | B1 | median at 10 inside a box for ends of box at 4 and 20 | Has to be inside a box; whiskers not required An independent mark that can be awarded for just a box; do not need whiskers for this mark. |
| (b) | Comparison | C1 | for a correct comparison of medians, eg. the median delay time on Mon was greater than the median delay time on Tues. or ft (a) | Simply quoting values for median, range and IQR is insufficient, they must be compared |
|  |  | C1 | for a correct comparison of a measure of spread, eg the interquartile range (range) of delay times on Mon was greater than the interquartile range (range) of delay times on Tues. or ft (a) <br> For the award of both marks at least one of the comparisons must be in context | Comparisons can relate to the median, and then either the range or the IQR. |
| (c) | statement | C1 | 'No' with statement explaining that there might not be any delays between 25 minutes and 30 minutes as in the upper $25 \%$ ( 12 trains) the delays may all be between 17 and 25 or 30 and 33 | The 'No' may be implied from their wording, and could be written next to the "?" The statement must mention (or imply) values above the UQ of 17 |

Q77.

| Question | Working | Answer |  | Notes |
| :---: | :---: | :---: | :---: | :--- |
| (a) |  | histogram | C1for 2 correct bars of <br> different widths or at least 3 <br> correct frequency densities <br> all bars in correct <br> proportions or 4 correct bars <br> with axes scaled and <br> labelled <br> fully correct histogram with <br> axes scaled and labelled |  |
| (b) | $81 \div 2=40.5$ | 108.2 | C1C1Cor $81 \div 2=40.5$ and $11.5 \div$ <br> $18 \times 5(=3.19 .)$. <br> 90 to 105 is 29$\quad$ C1For answer in range 108 to <br> 109 |  |

Q78.

| Question | Working | Answer | Mark | Notes |
| :---: | :---: | :---: | :---: | :---: |
| (a) | $\begin{aligned} & 1.5,6,10.2,7.2 \text {, } \\ & 1.2 \end{aligned}$ | Histogram drawn | C1 | for 2 correct bars of different widths or at least 3 correct frequency densities. |
|  |  |  | C1 | for all bars in correct proportions or 4 correct bars with axes scaled and labelled. |
|  |  |  | C1 | for fully correct histogram with axes scaled and labelled. |
| (b) |  | $\frac{123}{150}$ | M1 | for a method to find number of students in interval, eg $30+51+36+\frac{1}{3} \times 18(=123)$ or $150-15-\frac{2}{3} \times 18(=$ 123) |
|  |  |  | A1 | $\text { for } \frac{123}{150} \text { oe or } 0.82 \text { or } 82 \%$ |

Q79.

| Question | Working | Answer | Mark | Notes |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 7 | P1 <br> P1 <br> A1 | for correct process to find any frequency, <br> eg. " 1.1 " $\times 10(=11)$ or " 2.8 " $\times 10(=28)$ or " 2.3 " $\times$ 20 ( $=46$ ) <br> or " 1.4 " $\times 20(=28)$ or " 1.4 " $\times 10(=14)$ or " 0.7 " $\times$ $30(=21)$ <br> or for a correct process to find the total area and an area of any block, <br> eg. using $1 \mathrm{~cm}^{2}=1$ unit of area to get 53.6 and one of $4.4,11.2,18.4,11.2,5.6,8.4$ <br> (dep P1) for complete process to find $20 \%$ of (" 1.4 " $\times$ $10+" 0.7 " \times 30$ ), <br> eg. $\frac{20}{100} \times " 35$ " <br> or $\frac{\text { "5.6" } 5 \text { " } 8.4 \text { " }}{\text { " } 53.6^{4}} \times 134 \times \frac{20}{100}$ <br> cao |

Q80.

| Question | Working | Answer | Mark | Notes |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{array}{l\|lllllll} 1 & 6 & 8 & 9 & & & & \\ 2 & 2 & 2 & 3 & 3 & 4 & 5 & 8 \\ 3 & 1 & 3 & 4 & & & & \\ 4 & 0 & 1 & & & & & \end{array}$ <br> key $4 \mid 1$ is 41 | Diagram | B2 <br> (B1) <br> B1 | for a fully correct diagram <br> for an ordered diagram with one error or omission or for an unordered diagram) <br> for an appropriate key |

Q81.

| Paper 1MA1: 2F |  | Answer | Notes |
| :---: | :---: | :---: | :---: |
| Question | Working |  |  |
| (a) |  | $\begin{array}{\|l\|llllll} \hline 12 & 3 & 5 & 9 & & & \\ 13 \mid & 0 & 3 & 3 & 5 & 7 & 8 \\ 14\|\mid & 7 & 8 & 9 & \\ 15 & 0 & 1 & & & & \\ \hline \end{array}$ $\text { Key: } 12 \mid 3 \text { represents } 123$ | C1 for an unordered diagram with just one error or for an ordered diagram with no more than two errors |
|  |  | $\frac{6}{6} \mathrm{oe}$ | C1 for a fully correct diagram |
| (b) |  |  | C1 for a correct key (units may be omitted but must be correct if included) |
|  |  |  | M1 for correct interpretation from their diagram (or from original information) of the number (6) out of 15 over 140 |
|  |  |  | A1 for $\frac{6}{15}$ oe or ft their diagram |

Q82.

| Question |  | Working | Answer | Mark | Notes |
| :--- | :--- | :---: | :---: | :---: | :--- |
|  | (a) |  | 165 | 1 | B1 cao |
| (b) |  | Correct <br> conclusion | 2 | C1 for correct statement on median (can ft) <br> C1 for 41 with correct statement on range <br> NB to get both marks at least one must be <br> interpreted in the context of the question |  |

Q83.

| Question | Working | Answer | Notes |  |
| :---: | :---: | :---: | :--- | :--- |
| (a) |  | 56 | B1cao <br> (b) |  |
|  | 32 | B1cao  <br> (c)  <br>  ReasonC1 starts argument eg 8 cars or $8 / 27$ <br> completes argument eg with $1 / 3=$ <br> $9 / 27$ |  | C1 |
|  |  |  |  |  |

Q84.

| Question | Answer | Mark | Mark scheme | Additional guidance |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} 20 \text { or } 24 \text { or } 168 \\ \text { Comparison } \end{gathered}$ | B1 <br> C2 <br> (C1 | for identification of the range of the girls (20) or the range (24) or the median (168) of the boys <br> for a correct comparison of medians and a correct comparison of ranges supported by correct figures <br> eg the median height for girls (165) is less than the median height for boys (168) and the range for girls (20) is less than the range for boys (24) <br> At least one comparison must be in context referring to height or quoting cm . <br> for a correct comparison of medians or a correct comparison of ranges that could ft their incorrect figure(s)) | Simply quoting values for median, range is insufficient; they must be compared. |

Q85.

| Question |  | Working | Answer | Mark | Notes |
| :---: | :---: | :---: | :---: | :---: | :--- |
|  | (a) |  | Reason | 1 | C1 reason for low attendance in hot weather, |
| (b) |  | Positive | 1 | B1 positive (correlation) |  |
| (c) |  | $15-25$ | 1 | B1 answer in range 15-25 |  |
| (d) |  | Data out of range | 1 | C1 explanation, e.g. extrapolation, data out of <br> range, number of children will be negative |  |

Q86.

| Paper 1MA1:3F |  |  |  |
| :---: | :--- | :--- | :--- |
| Question | Working | Answer | Notes |
| (a) |  | Line drawn <br> (b)(i) |  |
| B1 cao |  |  |  |
| (ii) |  | B1 Straight line drawn passing <br> between $(2,20)$ and $(2,30)$ AND <br> $(13,86)$ and $(13,94)$ |  |
| (c) |  | Value <br> between 60 <br> and 70 <br> Statement | C1 positive |
| (d) |  | C1 for referring to the danger of value given <br> extrapolation outside the given range <br> or for a given point <br> Eg line of best fit may not continue or <br> full marks are hard to achieve no <br> matter how much revision is done |  |

Q87.

| Question | Answer | Mark | Mark scheme | Additional guidance |
| ---: | :---: | :---: | :--- | :--- |
| (a) | negative | B1 | cao | Ignore any description of <br> a relationship and any <br> reference to strength of <br> correlation |
| (b) | Explanation | C1 | for a correct explanation, <br> eg "not in line with the trend of the <br> other points" <br> "does not fit in with the <br> correlation" <br> "is far away from the other points <br> or line of best fit" <br> for an explanation <br> eg "point would be outside of the <br> range of the scatter diagram" | C1 |
| (c) | Comment | C1 |  |  |

Q88

| Question | Working | Answer | Mark | Notes |
| :---: | :---: | :---: | :---: | :--- |
| (a) |  | $72-80$ | M1 | for a single line segment with a positive gradient that <br> could be used as a line of best fit or a horizontal line <br> from 740 or a point plotted at $(x, 740)$ where $x$ is in the <br> range $72-80$ <br> answer in range $72-80$ |
| (b) |  | Explanation | B1 | explanation, e.g. 110 cm is outside of the range of the <br> data, the line of best fit cannot be extended that far |

Q89.

| Question | Working | Answer | Mark | Notes |
| :---: | :---: | :---: | :---: | :---: |
| (a)(i) |  | 480-500 | B1 B1 | for line of best that can be used to estimate time of flight <br> for $480-500$ or ft lobf |
| (a)(ii) |  | reason | C1 | for reason, e.g. lobf can vary, data is only a sample, scale cannot be read exactly |
| (b)(i) |  | 9.4-9.8 | M1 A1 | for method to find gradient, e.g. triangle drawn with "change in distance $\div$ change in time" <br> for 9.4-9.8 or ft lobf |
| (b)(ii) |  | speed | C1 | for speed (in miles per minute) oe |

Q90.

| Question | Answer | Mark | Mark scheme | Additional guidance |
| :---: | :---: | :---: | :---: | :---: |
| (i) | 65 | M1 | for working with proportion eg. $10 \div 30 \times 195(=65)$ | Condone use of 200 for 195 |
|  |  | A1 | cao |  |
| (ii) | statement | C1 | for statement |  |
|  |  |  | Acceptable examples <br> sample is representative (otherwise answer wrong) random sample (otherwise answer will be different) the 30 students are from the 195 (otherwise not accurate) 10 out of every 30 want to go to the Theme Park (otherwise answer will be different/wrong) <br> there is no bias |  |
|  |  |  | Not acceptable examples <br> There would be more than 10 people who want to go to the Theme Park <br> I rounded my answer |  |

Q91.

| Question | Answer | Mark | Mark scheme | Additional guidance |
| :--- | :--- | :--- | :--- | :--- |
|  | 72 | M1 | for $\frac{5}{30}=\frac{12}{p}$ oe, eg $\frac{12}{p} \times 30=5$ or $12 \div$ <br> $\frac{5}{30}$ |  |
|  |  | or $5: 30=12: p$ <br> or 1 in $6(30 \div 5)$ counters are yellow, so <br> $12 \times$ " 6 " <br> or using equivalent ratios to $5: 30$, <br> eg. $2: 12$ and $10: 60$ and adding to give 2 <br> $+10: 12+60$ |  |  |
|  |  | A1 | cao |  |

Q92.

| Question | Answer | Mark | Mark scheme | Additional guidance |
| :---: | :---: | :---: | :---: | :---: |
| (i) | 238 | P1 | for working with proportion eg $\frac{17}{50} \times 700$ oe |  |
|  |  | A1 | cao |  |
| (ii) | statement | C1 | for statement |  |
|  |  |  | Acceptable <br> Sample is representative (otherwise answer wrong) |  |
|  |  |  | Random sample (otherwise answer will be different) |  |
|  |  |  | The 50 people are from the 700 (otherwise not accurate) |  |
|  |  |  | 17 out of every 50 want a sports bag (otherwise answer will be different / wrong) |  |
|  |  |  | There is no bias |  |
|  |  |  | That the other 650 will want the same gifts as the 50 |  |
|  |  |  | There would be more than 17 people who want the |  |
|  |  |  | sports bag |  |
|  |  |  | I rounded my answer |  |
|  |  |  | 17 out of 50 want a sports bag |  |
|  |  |  | A repeat of the calculation done in (i) |  |
|  |  |  | Most of the people would want a sports bag References as what might change in the future (eg a |  |
|  |  |  | References as what might change in the future (eg a change in membership) |  |
|  |  |  | That all 700 people wanted a type of gift rather than |  |
|  |  |  | no gift (otherwise would have changed my answer) |  |

Q93.

| Question | Answer | Mark | Mark scheme | Additional guidance |
| :---: | :---: | :---: | :--- | :--- | :--- |
| (a) | 540 | P1 | for $\frac{120}{20}(=6)$ or $\frac{20}{120}(=0.16 .$.$) or \frac{90}{20}(=4.5)$ <br> or $\frac{20}{90}(=0.22 .)$. | Decimal values truncated <br> or rounded to <br> 2 dp or more |
| for $\frac{20}{120}=\frac{90}{n}$ or $\frac{20}{90}=\frac{120}{n}$ or $\frac{90 \times 120}{20}$ oe |  |  |  |  |
| cao | Explanation | C1 | A1 <br> for explanation <br> Acceptable examples <br> If marks fall off Shirley will have <br> over-estimated the number of bees <br> There will be fewer bees <br> Her amount will go down |  |
| Not acceptable examples <br> My answer will be wrong <br> It will increase the answer |  |  |  |  |

Q94.

| Paper 1MA1: 1F |  |  |  |  |
| :--- | :---: | :---: | :--- | :--- |
| Question | Working | Answer |  |  |
|  |  | 400 | P1 | Start to process eg. $1200 \div 60$ <br> Notes |
|  |  | A1 | 400 oe (accept number of whole pizzas eg. $400 \div 4=100$ <br> with 4 people per pizza) |  |
| C1 | Eg. Assumption that sample is representative of <br> population - it may not be all 1200 people are going to <br> the party - need less pizza if they don't, assume 4 people <br> per pizza - if different may need more/fewer pizzas |  |  |  |

Q95.

| Question | Answer | Mark | Mark scheme | Additional guidance |
| ---: | :---: | :---: | :--- | :--- |
| (i) | Maxine <br> with bigger <br> number of <br> trials | C1 | for Maxine with reason <br> Acceptable examples <br> She throws the coin more times than Stuart <br> Not acceptable examples <br> Maxine throws it 50 times <br> She gets more Tails <br> Stuart (he) ...... |  |
| (ii) | $\frac{37}{60}$ | B1 | for $\frac{37}{60}$ oe |  |

Q96.

| Question | Working | Answer | Mark | Notes |  |
| :--- | :---: | :---: | :---: | :--- | :--- |
|  |  | 0.23 | P1 | for $45 \div 300(=0.15)$ | for $0.62 \times 300(=186)$ |
|  |  |  | P1 | (dep P1) for <br> $1-(0.62+" 0.15 ")$ <br> $(\operatorname{dep} P 1)$ for <br> $300-(" 186 "+45)$ | oe |
|  |  |  | A1 | oe |  |

Q97.

| Question | Answer | Mark | Mark scheme | Additional guidance |
| ---: | :---: | :--- | :--- | :--- |
| (a) | 0.3 | B1 | for 0.3 oe | $\begin{array}{l}\text { Acceptable equivalents are } 3 / 10 \\ \text { or } 30 \% \\ \text { Answer on answer line takes } \\ \text { precedence }\end{array}$ |
| (b) | 4 | B1 | 4 or ft their (a) |  |
| (c) | 12 | M1 | for $0.2 \times 60$ oe |  |
| A1 not accept a statement of |  |  |  |  |
| probability (eg 0.1$)$ |  |  |  |  |
| Do not accept the use of any |  |  |  |  |
| other probability |  |  |  |  |$] .$|  |
| :--- |

