	Tiers 1-2	Tier 3	Tier 4	Tier 5 - Majority	Tier 6
Autumn 1					
Problem solving task Assessment					
Place value	Count on and back in steps of constant size				
1. Rounding recap	Recognise odd and even numbers	Order positive and negative integers			Convert between ordinary and standard index form representations.
2. Rounding to significant figures	Order positive integers and decimals to 1 decimal place	Order positive decimals to 2 decimal places	Order positive and negative decimals (including numbers with a differing number of decimal places)	Order any set of numbers (including those written in standard form)	Recognise that measurements given to the nearest whole unit may be inaccurate by up to one half of the unit in either direction
3. Standard form representations (links with science)	Round whole numbers to the nearest whole, $10,100,1000$	Round decimals to the nearest whole number or 1 decimal place	Round decimals to 2 decimal places	Round decimals to an appropriate degree of accuracy (including significant figures)	Make and justify estimates and approximations of calculations by rounding numbers to one significant figure
					Explore the language of proof using algebraic expressions for odd and even numbers; Express an algebraic number of the form 'abc' as '100a+10b+c'
Addition and subtraction	Use mental methods to add or subtract multiples of 10 or 100				
4. Adding and subtracting standard form	Know and use addition and subtraction facts to 20				
5. Upper and lower bounds (addition/subtraction) (include inequality notation)	Use written methods to add and subtract integers and decimals to 2 dp	Add and subtract integers and decimals of any size (with the same number of decimal places)	Add and subtract integers and decimals of any size (including negatives and numbers with a differing number of decimal places)	Use positive and negative numbers of any size, the laws of arithmetic and inverse operations	Work on proofs involving addition and subtraction (e.g. 'show that abc-bca $=99 \mathrm{k}$ ')
6. Upper and lower bounds (multiplication)		Add and subtract negative numbers		Add and subtract numbers written in standard form	Communicate the solution to a problem involving measurement, explaining the limitations of accuracy using upper and lower bounds
7. Upper and lower bounds (in context of problem)	Find the perimeter of rectangles	Calculate perimeters of shapes made of rectangles	Calculate and use the perimeter of any shape	Solve problems involving perimeter (considering upper and lower bounds)	Solve problems involving perimeter of compound shapes (including circles) Use inequality notation to specify simple error intervals due to truncation or rounding (in context)
					Explore degrees of accuracy with multiplication and division problems
Angle sums	Draw and measure angles (acute, obtuse)	Draw and measure any angle (including reflex)			
8. Angles in parallel lines (recap)	Distinguish between and estimate the size of acute, obtuse and reflex angles				
9. Interior angles	Begin to find the angles in a triangle	Know the angles at a point, on a straight line and in a triangle	Know and use angles in a quadrilateral	Know and use properties of angles, parallel and intersecting lines, triangles and other polygons	
10. Exterior angles		Recognise vertically opposite angles	Identify alternate and corresponding angles	Know and use interior and exterior angle sums	Prove rules for interior and exterior angle sums
11. Geometrical problems with angles			Solve geometrical problems using alternate and corresponding angles justifying answers	Solve geometric problems using step-by-step reasoning	Solve multi-step problems using properties of angles, of parallel lines, and of triangles and other polygons, justifying inferences and explaining reasoning with diagrams and text.
12. Poster lesson (angle properties)					
Autumn 2					
Problem solving task Assessment					

3. Add and subtract algebraic fractions
4. Multiply and divide algebraic fractions
5. Convert recurring decimals into fractions
6. Compound interest and decay

Applications

7. Language of probability. Probability scale.

8. Find and justify probabilities of events. P(event) $\mathrm{p}, \mathrm{P}($ not event $)=1-\mathrm{p}$
9. Use lists and tables to record all outcomes for single events and two successive events
10. Use a numerical scale to express and compare experimental and theoretical probabilities
11. Understand relative frequency as an estimate of probability and use this to compare outcomes
12. Use tree diagrams to represent outcomes of two or more events
more events
13. Know whe tree diagrams)

Spring 2
 Problem solving tas Assessment

Ratio and proportion

1. Compare two ratios. Simplify ratios recognising links
with fraction notation (recap)
2. Calculate ratios in a range of contexts (recap)
3. Use proportional reasoning to solve problems
(recap)
4. Explore properties of sides of right angled triangles
(Pythagoras)
,
5. Apply Pythagoras' theorem in 2 D
6. Explore ratios in right angled triangles (experiment)
7. Explore exact values for $\sin x, \cos x$ and $\tan x$ (second of experimental lesson)
8. Find a side given an angle
9. Find an angle given a side
10. Solve problems with right angled triangles
11. Poster lesson

Add and subtract simple fractions with the same denominator Find simple equivalent FDP
Calculate simple fractions and percentages of amounts

Add and subtract simple fractions
Convert between fractions, decimals and percentages
Calculate fractions and percentages of
quantities

Use vocabulary and ideas of probability, drawing on experienc scale from 0 to 1 ;
Find and justify probabilities based on equally
ontexts
dentify all the possible mutually exclusive outcomes of a single eve

Use the vocabulary and ideas of probability, drawing on experience 0 to 1 likely outcomes in simple contexts Identify all the possible mutually exclusive outcomes of a single event.

Compare experimental and theoretica probabilities in simple contexts.

Understand and use $£ . p$ notation

Convert f to p and vice versa
Carry out mental and written calculations involving money Read the time to the minute on analogue and digital clocks

Se 12 hour and 24 hour clock notation
Convert between mintes and hour

Understan
ncrease and decrease and amount by a give percentage
Use direct proportion in simple contexts

Use ratio notation

Simplify ratios (including money and time)
ivide a quantity into two parts in a simple ratio

Add and subtract fractions
Add and subtract simple algebraic fractions
Use division to convert a fraction to a decimal Convert recurring decimals into fraction
ncrease and decrease and amount by a given percentage

Interpret results of an experiment using the language of probability and appreciate that random processes are unpredictable

Know that, if the probability of an event occurring is $1-p$
sse diagrams and tables to record all possib. mutually exclusive outcomes for single even nd for two successive events

Increase and decrease an mount by a given
percentage or fraction
Use multipliers for percentage change
Know that the sum of probabilities of all mutually exclusive outcomes is 1 and use this when solving problems

Know that, ifthe probability of an event occurring is p, then the probability of it not occurring is $1-p$
Use lists and tables to record all possible mutually exclusive outcomes for single events

Compare estimated experimental probabilitie with theoretical probabilities

Use a numerical scale from 0 to 1 to express and compare experimental and theoretical probabilities in a range of contexts.

Know when to add or multiply two
probabilities: if A and B are mutually exclusive, then the probability of A or B occurring is $\mathrm{P}(\mathrm{A})$ $P(B)$, whereas if A and B are independent events, the probability of A and B occurring is $P(A) \times P(B)$
Understand relative frequency as an estimate of probability and use this to compare outcomes of experiments.
Se tree diagrams to represent outcomes of two or more events and to calculate probabilities of combinations of independent events

Use the unitary method to solve proble involving ratio and direct proportion

Simplify ratios, including those in different ratio

Use proportional reasoning to solve problems, choosing the correct numbers to take as 100% or as a whole
Compare two ratios
Simplify ratios, recognising links with fraction
notation

Calculate ratios in a range of contexts

Apply understanding of link between ratio and proportion

Recognise when fractions or percentages are needing to compare proportions

Extend mental methods of calculation with fractions, percentages and ratios

Understand and apply Pythagoras' theorem when solving problems in 2 D and simple problems in 3 D
Know the ract var for $\mathrm{x} \cos \mathrm{X}$ and $\tan \mathrm{x}$ for $0,30,45,60$ and 90 degrees

Understand and use trigonometric relationships in right-angled triangles, and use these to solve problems, including those involving bearings

Understand and use proportionality and calculate the result of any proportional change using multiplicative methods
Understand and use measures of compound measures speed, density and pressure and solve
problems involving constant or average rates of change.

Construct, on paper and using ICT, graphs and diagrams to represent ata including, bar graphs and imple pie charts

Calculate statistics for discrete sets of data finding the mode, range and median
including frequency tables, bar charts, pictograms and p charts
13. Mode, median, mean and range
14. Use of averages
15. Interpret and draw frequency polygons
16. Interpret and draw scatter diagrams and lines of best fit

Construct and interpret graphs and diagrams Use appropriate graphical representation or represent data, including bar line graphs and involving discrete, continuous and grouped frequency diagrams for grouped discrete data
data

Use appropriate measures of central tendenc median, mean, mode and modal class) and spread (range, including consideration of
utliers)
ind the mode, mean, median and range for set of discrete data, and the modal class for grouped discrete data
interpret and construct tables, charts and diagrams, including frequency tables, ba charts, pie charts and pictograms for ategorical data, line charts for ungrouped discrete numerical data, tables and line graphs

Interpret, analyse and compare the distribe empirical distributions through use of ppropriate graphical representation involvin
discrete, continuous and grouped data

Interpret, analyse and compare the distributions of data sets from univariat empirical distributions through use of appropriate measures of central tendency (median, mean, mode and modal class) and spread (range, including consideration of outliers)

Use appropriate measures of central tendency (median, mean, mode and modal class) and outliers)

Use a range of statistical methods to explore and summarise data, including estimating and finding the mean and median for large data sets

Interpret and draw frequency polygons

Interpret and draw scatter diagrams and lines of best fit

Summer 1 blem solving ta Assessment

Explorequadratic seq

Sequences

1. Nth term (recap)
2. Explore quadratic sequences
3. Interpret, deduce and justify generalisations for the nth term of linear and quadratic sequence
 Gen
rule
ontexts
iven a rul

Algebraic expressions

4. Factorise linear expressions (recap)
5. Expand two brackets to form a quadratic expression
6. Factorise a quadratic expression into brackets
7. Simplify algebraic fractions by factorising

Use letter symbols to represent nnknown numbers or variable implify linear algebraic expressio by collecting like terms understand and use inverse operations

Use letter symbols to represent unknown umbers or variables
Simplify linear al gebraic expressions by collecting like terms (numbers and letters) Understand that algebraic operations follow the rules of arithmetic

Multiply a single term over a bracket (positive integer coefficients)
se index notation for small positive integer powers
simplify or transform linear expressions by collecting like terms
Understand that algebraic operations, of arithmetic
o-term and positionear seq

Explore iterative sequences
Se linear expressions to describe the nth term fa simple arithmetic sequence

Relate linear sequences to linear function
taking out sing erem common factors
Add simple algebraic fractions

Expand two brackets to form a quadratic expression

Develop, compare and evaluate algebraic and spaital representations of situations that generate sequences
Interpret, deduce and justify generalisations for the nth term of linear and quadratic sequences, including the properties of square and triangle numbers.

Find the inverse of a linear function
$\begin{array}{ll} & \text { situations or mathematical problems; } \\ \text { Work with general iterative processes e.g. use } & \text { Solve linear equations and inequalities } \\ \text { systematic trial and improvement methods to } & \text { representing the solution in the context of the }\end{array}$ find approximate solutions of equations such problem

[^0]as $x^{3}+x=20$.

Algebraic manipulation

se simple formulae expressed in words, then symbols

Substitute positive integers int imple linear expressions and formulae

Use simple formulae from mathematics and other subjects substitute positive integers in simple linear expressions and formulae

Construct and solve simple linear equations, e.g. $4 a=12$

Use coordinates in the first quadrant

Linear graphs

14. Generate points and plot graphs of linear functions (recap)

15. Find the graident of lines given by $y=m x+c$
16. Investigate gradients of parallel and perpendicular lines

Plot a simple graph (e.g. for multiplication table).
symbols and mappings
se coordinates in all four quadrants and dentify coordinates of points determined by eometric information
Generate coordinate pairs that satisfy a simpl
rule ule
explicitly in terms of x)
liar functions (y given
lit
explicitly in terms of x).

Derive simple formulae and in simple cases change subject. Construct and solve linear equations with integer coefficients (unknow on one side)
Substitute positive integers into expression
involving small powers involving small powers

Se formulae from mathematics and other subjects

Construct and solve linear equations with integer coefficients (unknown on one or bo sides, without and with brackets)
Substitute numbers into expressions and formulae

Change the subject of simple formulae

Generate points in all four quadrants and plot graphs of linear functions (y given explicitly in terms of x), on paper and using IC

Recognise that equations of he form $y=m x$ correspond to straight-line graphs
Discuss and interpret graphs arising from situations.
Understand and use measures of compound Represent and solve problems involving measures speed, density and pressure and solve constant or average rates of change graphically problems involving constant or average rates of change.

Generate points and plot graphs of linear functions given explicitly (y given in terms of x) and implicitly (y given implicitly in terms of x, e.g. $a y+b x=0, y+b x+c=0$

Find the gradient of lines given by equations of the form $y=m x+c$

Construct and solve linear equations with integer coefficients (with and without brackets, negative signs anywhere in the equation, positive or negative solution) Simplify algebraic fractions

Use formulae from mathematics and other subjects; substitute numbers into expressions subjects; substitute numbers into expressions cases, change its subject
Solve quadratic equations of the form $x^{2}+b x$ $+c=0$ by factorisation, graphically or by iterative, e.g. trial and improvement, methods

Expand the product of two linear expressions
Expand the product of two linear expressions
of the form $a x \pm b$, simplify the corresponding quadratic expression, and factorise simply quadratic expressions
Use identities such as $a^{2}-b^{2}=(a+b)(a-b)$: compare and evaluate different representations of the same context; identify equivalent expressions and confirm by transformation
Generate points in all four quadrants and plot the graphs of the linear functions, where y is given explicity in terms of x, recognise that equations of the form $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ correspond to straight-line graphs
Investigate the gradients of parallel lines and
lines perpendicular to theselines lines perpendicular to these lines

Construct a pair of simultaneous linear equations to represent real-life situations or mathematical problems; examine and compare algebraic methods of solution; use graphical of two lines gives thplain why the intersection why some cases have no common solution and others have an infinite number

Find the midpoint of the line segment AB, given the coordinates of points A and B
17. Find the midpoint of a line segment $A B$ given A and B .
*18. Construct a pair of simultaneous equations. not.
*19. Plot quadratic graphs

Summer 2

Problem solving task

Assessment

Transformations

1. Identify reflection symmetry in 2 D shapes
2. Solve problems involving translations

dentify lines of symmetry in 2D

 shapes Visual ise and draw where a shape will be after reflection in a mirror lineExplore symmetry and simple transformations using ICT.

Understand and use the language and notation

 rotationsRognise and visual ise the symmetries of a 2 D Identify all the symmetries of 2 D shapes

Transform 2D shapes by rotation, reflection and translation and try out mathematical eppresentations of simple combinations of these transformations

Identify reflection symmetry in 3 D shapes

Use a coordinate grid to solve problems involving translations, rotations, reflectio and enlargements reflections preserve length and angle, and objects onto congruent images

Transform 2 D shapes by combinations of translations, rotations and reflections

Use congruence to show that translations, rotations and reflections preserve length and
angle
3. Solve problems involving rotations
4. Solve problems involving reflections
5. Solve problems involving enlargements (positive
integer)
6. Solve problems involving enlargements (negative,
fractional)
7. Understand and use the effects of enlargement on
perimeter
8. Explore combinations of transformations
9. Know that if two shapes are similar, corresponding
angles are equal and corresponding sides are in the
same ratio
*10. Find the point that divides a line in a given ratio,
using properties of similar triangles
Construction
11. Identify and draw nets of shapes
12. Volume of prisms
13. Surface area of prisms
14. Conversions between units oflength, area and volume
13. Construct the midpoint and perpendicular bisector of a
line segment
14. Construct the bisector of an angle
15. Construct the perpendicular from a point to a line
16. Use a ruler and compasses to construct a triangle
17. Find a simple locus
*18. Find the locus of a point that moves according to a
more complex rule
19. Useand interpret maps and scale drawings
20. Problem solve using loci, maps and scale drawings
1

Draw lines of symmetry and complete symmetrical shapes

Draw the reflection of a shape in a mirror line along one side Use the vocabulary of position,
direction and movement to irection and movement, to describe mont abot

Reflect 2 D shapes in given mirror lines

Rotate a 2 D shape about a given point
Translate 2D shape around a grid

Explore these transformations and symmetri using ICT.

Draw and classify polygons by dentifying their properties, including their line symmetry Identify and draw nets of simple Construct squares adrestand

Construct a triangle given two sides and the included angle (SAS) or two angles and the included side (ASA)
Draw simple nets of 3D shapes

Explore and compare combinations of translations, reflections and rotations of 2 D shapes
 Measure the angle of rotation, using fractions of a turn or degrees
 Useanypointasthecentreorrotation

Enlarge $2 D$ shapes, given a centre of
Enlarge 2 D shapes using positive, fractional and enlargement and a positive integer scale factor, negative scale factors recognising the similarity identifying the scale factor as the ratio of the negative scale factors recognising the similarity lengths of any two corresponding line segment

Calculate the length of $A B$, given coordinates of points Aand B
Find the point that divides a line in a given ratio, using properties of similar triangles Know that if two 2D shapes are similar, corresponding angles are equal and corresponding sides are in the same ratio Understand and use the effects of enlargement on perimeter

Fonstren for Const
line

Use ruler and compasses to construct a riangle, given the lengths of the three side (SSS)

Find simple loci to produce shapes and paths.
Find a simple locus

Use bearings to specify direction

Use and interpret maps and scale drawings.

Construct bisectors of angles and perpendicular bisectors of line segments.

Understand from experience of constructing them that triangles given SSS, SAS, ASA or RHS are unique, but that triangles given SSA or AAA are not
Find the locus of a point that moves accordin to a more complex rule

[^0]: 8. Work with general iterative processes
